S.V. Rasskazov1,2, A.M. Ilyasova1, S.A. Bornyakov1, E.P. Chebykin1,3
1Institute of the Earth's Crust SB RAS, Irkutsk, Russia
2Irkutsk State University, Irkutsk, Russia
3Liminological Institute, SB RAS, Irkutsk, Russia
Rasskazov Sergei Vasilievich,
doctor of geological and mineralogical sciences, professor,
664025 Irkutsk, st. Lenina, 3,
Irkutsk State University, Faculty of Geology,
Head of Dynamic Geology Chair,
664033 Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
Head of the Laboratory for Isotopic and Geochronological Studies,
tel.: (3952) 51–16–59,
email: rassk@crust.irk.ru.
Ilyasova Aigul Maratovna,
candidate of geological and mineralogical sciences,
664033 Irkutsk, Lermontov st., 128,
Institute of the Earth's Crust SB RAS,
Leading engineer,
email: ila@crust.irk.ru.
Bornyakov Sergey Alexandrovich,
candidate of geological and mineralogical sciences,
664033 Irkutsk, Lermontov st., 128,
Institute of the Earth's Crust SB RAS,
Leading Researcher,
email: bornyak@crust.irk.ru.
Chebykin Evgeny Pavlovich,
Candidate of Chemical Sciences,
664033 Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
664033 Irkutsk, st. Ulan-Batorskaya, 3,
Limnological Institute SB RAS,
Senior Researcher,
email: epcheb@yandex.ru.
Abstract. Variations of Si, Na, Li, 234U activity, and 234U/238U activity ratio in thermal and cold groundwaters, as well as cooled hydrotherms from active faults in the SE coastal area of Middle Baikal are considered. For the Maksimikha area, hydrogeochemical monitoring data of 2013–2015 with interpretation in terms of chemical hydrogeodynamics: temperature, depth of water reservoir and opening–closing of microcracks for circulating water. When comparing series of hydrogeochemical monitoring with a series of earthquakes K = 10.5–12.7 of the Goryachinsk seismic reactivation in Middle Baikal, an increased sensitivity of responses to earthquakes at the station of cooled hydrotherms from the transition zone of the lower hydrogeodynamic floor is revealed in comparison with the responses of fracture-derived cold water from the upper floor. The Maksimikha groundwater reservoir is considered as a representative reservoir located along the in the Yambuy transtension zone that is lateral structure of the South Baikal basin. Coseismic hydrogeodynamics of the Maksimikha reservoir in 2013–2015 is referred to the time interval preceding the landmark Goloustnoye earthquake on September 05, 2015, which corresponded to the conditions of maximum compression of the crust of the Kultuk reservoir, localized at the main structural line of the Baikal Rift System, in the 2008–2020 seismogeodynamic cycle.
Keywords: groundwater, monitoring, Na/Li, 234U/238U, 234U, earthquake, friction clay, Baikal.
P. 108–145
Arnorsson S., Gunnlaugsson E., Svavarsson H. The chemistry of geothermal waters in Iceland-II. Mineral equilibria and independent variables controlling water compositions // Geochim. Cosmochim. Acta. 1983. V. 47. P. 547–566.
Finkel R.C. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors // Geophysical Research Letters. 1981. Vol. 8, No. 5. P. 453–456.
Fouillac R., Michard S. Sodium/Lithium ratio in water applied to geothermometry of geothermal reservoirs // Geothermics. 1981. V. 10. P. 55–70.
Fournier R.O., Potter R.W. A revised and expanded silica (quartz) geothermometer. Geotherm. Resourc. Counc. Bull. 1982. V. 11. P. 3–12.
Ikari M. J., Saffer D. M., Marone C. Frictional and hydrologic properties of clay-rich fault gouge // J. Geophys. Res. 2009. Vol. 114. P. B05409. doi:10.1029/2008JB006089.
Karingithi C.W. Chemical geothermometers for geothermal exploration // Short course IV on exploration for geothermal resources, organized by UNU-GTP, KenGen and GDC, at Lake Naivasha, Kenya, 2009. P. 1–12.
Klerkx J., De Batist M., Poort J., Hus R., Van Rensbergen P., Khlystov O., Granin N. Tectonically controlled methane escape in lake Baikal // S. Lombardi et al. (eds.). Advances in the Geological Storage of Carbon Dioxide. Springer, 2006. P. 203–219. Kocserha I., Gömze L.A. Friction properties of clay compounds // Applied Clay Science. 2010. Vol. 48. P. 425–430.
Moore D. E., Lockner D.A. Friction of the smectite clay montmorillonite: A review and interpretation of data / The Seismogenic Zone of Subduction Thrust Faults, MARGINS Theor. Exp. Earth Sci. Ser., vol. 2, edited by T. H. Dixon and J. C. Moore, Columbia Univ. Press, New York. 2007. P. 317–345.
Rasskazov S., Ilyasova A., Bornyakov S., Chuvashova I., Chebykin E. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia // Front. Earth Sci. 2020. V. 14, No. 4. P. 711–737; doi.org/10.1007/s11707-020-0821-5
Rasskazov S.V., Chebykin E.P., Ilyasova A.M., Snopkov S.V., Bornyakov S.A., Chuvashova I.S. Change of seismic hazard levels in complete 12-year seismogeodynamic cycle of the South Baikal Basin: Results of hydroisotopic (234U/238U) monitoring // Geology and Environment. 2022. V. 2, No. 2. P. 7–21. DOI 10.26516/2541-9641.2022.2.7)
Sanjuan B., Millot R., Brach M., Asmundsson R., Giroud N. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments // Chemical Geology. 2014. V. 389. P. 60–81. http://dx.doi.org/10.1016/j.chemgeo.2014.09.011
Tembe S., Lockner D.A., Wong T.-F. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite // J. Geophys. Res. 2010. Vol. 115. P. B03416. doi:10.1029/2009JB006383.
Nikolaeva A.V. Barguzin springs and their mineral formations. Proceedings of the Mineralogical Museum of the USSR Academy of Sciences. Vol. III. 1927. P. 50–132.
Peryazeva E.G., Plyusnin A.M., Garmaeva S.Z., Budaev R.Ts., Zhambalova D.I. Features of the formation of the chemical composition of lake waters on the eastern coast of Lake Baikal // Geography and Natural Resources. 2016. No. 5. P. 49–59. DOI: 10.21782/GIPR0206-1619-2016-5(49-59)
Pinneker E.V. Features of research for the purposes of earthquake forecasting based on hydrogeochemical indicators // Research on the creation of scientific foundations for earthquake forecasting. Irkutsk, 1984. P. 39–43.
Pinneker E.V., Yasko V.G. Results of studying hydrogeological precursors of earthquakes in the Baikal rift zone // Abstracts of reports of the All-Union Meeting on Earthquake Forecasting. Alma-Ata, 1980. P. 10–12.
Pinneker E.V., Dzyuba A.A., Lebedeva V.V., Papshev M.V., Rzhechitsky Yu.P., Rubinchik E.A. Shabyniin L.L. Main results and tasks of studying changes in hydrogeological conditions during the preparation of earthquakes in the Baikal rift zone // Research on the creation of the foundations of earthquake forecasting in Siberia. Irkutsk, 1989. P. 42–43.
Pinneker E.V., Shabynin L.L., Yasko V.G. et al. Geology and seismicity of the BAM zone. Hydrogeology. Novosibirsk: Nauka, 1984. 167 p.
Pinneker E.V., Yasko V.G., Shkandriy B.O. Hydrogeochemical precursors of earthquakes // Hydrogeochemical methods for searching for ore deposits and forecasting earthquakes. Alma-Ata, 1983. P. 120–123.
Pinneker E.V., Yasko V.G., Shkandriy B.O. Results of studying hydrogeological precursors of earthquakes in the Baikal rift zone // Hydrogeochemical precursors of earthquakes. M.: Nauka, 1985a. P. 259–285.
Pinneker E.V., Yasko V.G., Shkandriy B.O. Results of studying hydrogeological precursors of earthquakes in the Baikal rift region // Hydrogeochemical precursors of earthquakes / Responsible. ed. G.M. Warshal. M.: Nauka, 1985b. P. 259–265.
Plyusnin A.M., Chernyavsky M.K., Posokhov V.F. Conditions for the formation of hydrotherms in the Barguzin Baikal region according to microelement and isotopic composition data // Geochemistry. 2008. No. 10. P.1063–1072.
Plyusnin A.M., Zamana L.V. Shvartsev S.L., Tokarenko O.G., Chernyavsky M.K. Hydrogeochemical features of the composition of nitrogen hydrotherms of the Baikal rift zone // Geology and Geophysics. 2013. Vol. 54, No. 5. P. 647–664.
Raskazov S.V., Chuvashova I.S. Volcanism and transtension in the northeastern Baikal Rift System. Novosibirsk, Academic Publishing House "GEO", 2018. 384 p. doi: 10.21782/B978-5-6041446-3-3
Rasskazov S.V., Chebykin E.P., Ilyasova A.M., Snopkov S.V., Bornyakov S.A., Chuvashova I.S. Change of seismic hazard levels in complete 12-year seismogeodynamic cycle of the South Baikal Basin: Results of hydroisotopic (234U/238U) monitoring // Geology and Environment. 2022. V. 2, No. 2. P. 7–21. DOI 10.26516/2541-9641.2022.2.7)
Rasskazov S.V., Chuvashova I.S., Yasnygina T.A., Saranina E.V., Chebykin E.P., Ilyasova A.M. Similarities and differences in the development of the Late Cenozoic Vitim and Dariganga melting anomalies: substantiation of the potential for rising of lower mantle fluids under the Barguzin Valley and Middle-Northern Baikal // Geodynamic evolution of the lithosphere in the Central Asian mobile belt (from ocean to continent). Meeting materials. Vol. 18. Irkutsk: Institute of the Earth’s Crust SB RAS, October 17–20, 2023. P. 222–223.
Rasskazov S., Ilyasova A., Bornyakov S., Chuvashova I., Chebykin E. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia // Front. Earth Sci. 2020. V. 14, No. 4. P. 711–737; doi.org/10.1007/s11707-020-0821-5
Rasskazov S.V., Ilyasova A.M., Bornyakov S.A., Snopkov S.V., Chuvashova I.S., Chebykin E.P. Hydrogeochemical responses of groundwater st. 184 in 2020–2021 on seismogenic deformations of the Baikal-Khubsugul reactivation // Geology and Environment. 2022. Vol. 2, No. 4. P. 26–52. DOI 10.26516/2541-9641.2022.4.26
Rasskazov S.V., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Orgilyianov A.I., Kovalenko S.N., Seminsky A.K., Popov E.P., Chebykin E.P. Hydrogeochemical zoning of uranium isotopes (234U/238U) in the Southern Siberian paleocontinent: the role of the South Baikal reservoir in the groundwater formation // Geodynamics & Tectonophysics. 2020. Vol. 11, No. 3. P. 632–650. https://doi.org/10.5800/GT-2020-11-3-0496
Sanjuan B., Millot R., Brach M., Asmundsson R., Giroud N. Use of two new Na/Li geothermometric relationships for geothermal fluids in volcanic environments // Chemical Geology. 2014. V. 389. P. 60–81. http://dx.doi.org/10.1016/j.chemgeo.2014.09.011
Shestakova A.V., Guseva N.V. The use of geothermometers for assessing deep circulation temperatures of thermal waters using the example of Eastern Tuva // News of Tomsk Polytechnic University. Georesources Engineering. 2018. Vol. 329. No. 1. 25–36.
Tembe S., Lockner D.A., Wong T.-F. Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite // J. Geophys. Res. 2010. Vol. 115. P. B03416. doi:10.1029/2009JB006383.
Rasskazov S.V. Goryachinsk Reactivation of the Yambuy Transtension Zone in 2013–2015: Coseismic Chemical Hydrogeodynamics of Groundwater from the SE Coast of Middle Baikal / S.V. Rasskazov, A.M. Ilyasova, S.A. Bornyakov, E.P. Chebykin DOI 10.26516/2541-9641.2023.4.108 // Geology and Environment : electronic scientific journal. 2023. V. 3, No. 4. P. 108–145.
Send a letter of feedback to S. Rasskazov