UDC 504.43:550.845 (51)
https://doi.org/10.26516/2541-9641.2025.2.124
EDN: ZRWIAJ
S.V. Rasskazov1,2, A.M. Ilyasova1, Yi-Min Sun3, S.V. Snopkov2,4, E.P. Chebykin1,5
1Institute of Earth Crust SB RAS, Irkutsk, Russia
2Irkutsk State University, Irkutsk, Russia
3Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China
4Irkutsk National Research Technical University, Irkutsk, Russia
5Limnological Institute SB RAS, Irkutsk, Russia
Abstract. Coordinated variations of U components and Si–Na/Li temperatures in groundwater reservoirs on the southern flank of the South Baikal Basin and the Tunka Valley were recorded that emphasized the unity of a neotectonic structure of the Khamar-Daban range, passing from the southern flank of the Tunka Valley to the one of the South Baikal Basin. On the southern shoulder of the Tunka Valley, in an area of junction between the Khamar-Daban and Urgudey ridges, the Tory-Urgudey-Nilovka boundary belt of groundwater with a high activity ratio of 234U/238U (AR4/8 = 2–3), limiting from the east, south, and west the core of the Tunka geothermal anomaly with low OA4/8 (less than 1.8), was traced. In the time interval from 2012 to 2024, hydrogeochemical signals of groundwater were obtained at the BRS monitoring stations, indicating a widespread transition from the Kultuk seismic reactivation to the Baikal-Khubsugul one in 2014–2015 and the lack of hydrogeochemical changes in some areas during strong earthquakes of the latter reactivation in late 2020 – early 2021. It is suggested that in 2014–2015, comprehensive seismogenic deformations of the BRS earth's crust developed in both its axial part and on the flanks, while the localization of strong deformations in the axial seismogenic structures entailed strong earthquakes of the Baikal-Khubsugul seismic reactivation of 2020–2023. Both flank and distal expansion of the BRS seismicity in 2023–2025 may reflect a seismogenic entry of the earth's crust into a state similar to the one of 2014–2015. The key significance of choosing a monitoring point for assessing the state of the earth's crust is emphasized. For the BRS, complete information is obtained at the axial Kultuk polygon, while on the flanks, the most important pre-seismogenic state of the earth's crust for strong earthquakes is not recorded, and observations are useless.
Keywords: groundwater, uranium, 234U/238U, Cherdyntsev-Chalov effect, geothermometer, earthquake
Arnorsson S., Gunnlaugsson E., Svavarsson H. The chemistry of geothermal waters in Iceland-II. Mineral equilibria and independent variables controlling water compositions // Geochim. Cosmochim. Acta. 1983. Vol. 47. P. 547–566.
Boldina S.V., Kopylova G.N. Effects of the January 30, 2016, Mw=7.2 Zhupanovsky earthquake on the water level variations in wells YuZ-5 and E-1 in Kamchatka // Geodynamics & Tectonophysics. 2017. Vol. 8, No. 4. P. 863–880. doi:10.5800/GT-2017-8-4-0321.
Bornyakov S.A., Salko D.V., Vstovsky G.V. Methodology of deformation monitoring in the South Baikal region and a conceptual approach to earthquake forecasting // ISU Bulletin. Earth Sciences Series. 2021. Vol. 38. DOI: 10.26516/2073-3402.2021.38.13
Chebykin E.P., Chuvashova I.S. Coseismic chemical hydrogeodynamics of the Kultuk groundwater reservoir: indicator roles of Na/Li, 234U/238U, and 234U // Geology and Environment. 2023. Vol. 3, No. 1. P. 141–171. DOI 10.26516/2541-9641.2023.1.141.
Chebykin E.P., Goldberg E.L., Kulikova N.S., Zhuchenko N.A., Stepanova O.G., Malopevnaya Yu.A. Method for determining the isotopic composition of authigenic uranium in the bottom sediments of Lake Baikal // Geology and Geophysics. 2007. V. 48, No. 6. C. 604–616.
Chebykin E.P., Ilyasova A.M., Snopkov S.V., Rasskazov S.V. Groundwater mercury signals from the Kultuk polygon during the preparation and implementation of the Baikal-Khubsugul seismic activation in 2020–2021 // Geology and Environment. 2022. Vol. 2, No. 1. P. 7–9. https://doi.org/10.26516/2541-9641.2022.1.7
Chebykin E.P., Rasskazov S.V., Ilyasova A.M., Snopkov S.V., Kovalenko S.N. Development of Listvyanka, Buguldeyka, and Olkhon-Priolkhonye monitoring polygons on the Baikal: prospecting study of trace elements and U isotopes in waters from rivers and groundwaters // Geology and Environment. 2023. Vol. 3, No. 2. P. 36–59. DOI 10.26516/2541-9641.2023.2.36
Chebykin E.P., Rasskazov S.V., Vodneva E.N., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Seminsky A.K., Snopkov S.V. First results of 234U/238U monitoring in waters from active faults on the western coast of Southern Baikal // Reports of the Academy of Sciences. 2015. V. 460, No. 4. P. 464–467.
Chebykin E.P., Sorokovikova L.M., Tomberg I.V., Vodneva E.N., Rasskazov S.V., Khodger T.V., Grachev M.A. The current state of the waters of the Selenga river on the territory of Russia on the main components and trace elements // Chemistry for sustainable development. 2012. V. 20, No. 5. P. 613–631.
Chen Wang-Ping, Nábělek J. Seismogenic strike-slip faulting and the development of the North China Basin // Tectonics. 1988. Vol. 7, No. 5, P. 975–989.
Chia Y., Chiu J.J., Chiang Y.H., Lee T.P., Liu C.W. Spatial and temporal changes of groundwater level induced by thrust faulting // Pure Appl. Geophys. 2008. Vol. 165, No. 1. P. 5–16 doi:10.1007/s00024-007-0293-5
Claesson L., Skelton A., Graham C., Dietl C., Mörth M., Torssander P., Kockum I. Hydrogeochemical changes before and after a major earthquake // Geology. 2004. Vol. 32, No. 8. P.: 641–644. doi:10.1130/G20542.1
Crampin S. The fracture criticality of crustal rocks // Geophys. J. Int. 1994. Vol. 118, No. 2. P. 428–438. doi:10.1111/j.1365-246X.1994.tb03974.x
Crampin S., Gao Y., Bukits J. A review of retrospective stress-forecasts of earthquakes and eruptions // Phys. Earth Planet. Inter. 2015. Vol. 245. P. 76–87. doi:10.1016/j.pepi.2015.05.008
Dobrynina A.A., Sankov V.A., Bornyakov S.A., Korol S.A., Sankov A.V. Microseismic noise anomalies in connection with the Kudarinsky earthquake of December 09, 2020 with Mw=5.6 in the Baikal Basin // Reports of the Academy of Sciences. Earth Sciences. 2023. Vol. 509, No. 1. P. 74–80. DOI: 10.31857/S2686739722602733
Golubev V.A. Conductive and convective heat transfer in the Baikal rift zone. Novosibirsk: Academic publishing house "GEO", 2007. 222 p.
Grebenshchikova V.I., Kuzmin M.I., Klyuchevsky A.V., Demyanovich V.M., Klyuchevskaya A.A. Elevated mercury levels in the source water of the Angara River: responses to geodynamic impacts and strong earthquakes // Reports of the Academy of Sciences. 2020. Vol. 491, No. 2. P. 77–81.
Johnson A.G., Kovach R.L., Nur A. Fluid-pressure variations and fault creep in Central California // Tectonophysics. 1974. Vol. 23, No. 3. P. 257–266. doi:10.1016/0040-1951(74)90025-0
Florensov N.A. Mesozoic and Cenozoic basins of the Baikal region. Moscow–Leningrad: Publishing House of the USSR Academy of Sciences, 1960. 258 p.
Fouillac R., Michard S. Sodium/Lithium ratio in water applied to geothermometry of geothermal reservoirs // Geothermics. 1981. V. 10. P. 55–70.
King C.Y., Koizumi N., Kitagawa Y. Hydrogeochemical anomalies and the 1995 Kobe earthquake // Science. 1995. Vol. 269, No. 5220. P. 38–39. doi:10.1126/science.269.5220.38 PMID:17787700
Koval P.V., Udodov Yu.N., Andrulaitis L.D., Sankov V.A., Gapov A.E. Mercury in water of the source of the Angara River: a five-year concentration trend and possible reasons for its variations // Reports of the Academy of Sciences. 2003. V. 389, No. 2. P. 235–238.
Koval P.V., Udodov Yu.N., Sankov A.V., Yasenovsky A.A., Andrulaitis L.D. Geochemical activity of faults in the Baikal rift zone // Reports of the Academy of Sciences. 2006. Vol. 409, No. 3. P. 389–393.
Li B., Shi Z., Wang G., Liu C. Earthquake-related hydrochemical changes in thermal springs in the Xianshuihe Fault zone, Western China // J. Hydrol. 2019. 124175.
Map of earthquake epicenters. Irkutsk: Baikal Branch of the Federal Research Center Unified Geophysical Service of the Russian Academy of Sciences, 2025. http://www.seis-bykl.ru
Nábělek J., Chen Wang-Ping, Ye Hong The Tangshan Earthquake sequence and its implications for the evolution of the North China Basin // Journal of Geophysical Research. 1987. Vol. 92, No. B12. P. 12,615–12,628.
Pinneker E.V., Pissarskiy B.I., Pavlova S.E. Helium isotope data for groundwater in the Baikal rift zones // Isotopes Environ. Health Studies. 1995. Vol. 31. P. 97–106.
Polyak B.G. Helium isotopes in the ground fluids of the Baikal Rift and its surroundings: Contribution to continental rifting geodynamics // Russian Journal of Earth Sciences. 2003. Vol. 5, No. 1. P. 45–66.
Rasskazov S.V., Chebykin E.P., Ilyasova А.М., Vodneva Е.N., Chuvashova I.S., Bornyakov S.А., Seminsky А.К., Snopkov S.V., Chechel'nitsky V.V., Gileva N.А. 2015. Creating the Kultuk polygon for earthquake prediction: variations of (234U/238U) and 87Sr/86Sr in groundwater from active faults at the western shore of Lake Baikal. Geodynamics & Tectonophysics. 2015. Vol. 6, No. 4. P. 519–553. doi:10.5800/GT-2015-6-4-0192.
Rasskazov S.V., Chebykin E.P., Chuvashova I.S., Ilyasova A.M., Snopkov S.V., Sun Yi-min Monitoring of uranium components and Si – Na/Li temperatures in the Arshan groundwater reservoir of Tunka Valley in 2012–2024: Tracing paragenetic relationships between hydrogeochemical and seismic processes in the Baikal Rift System // Geology and Environment. 2024b. Vol. 4, No. 3. P. 65–112. https://doi.org/10.26516/2541-9641.2024.3.65.
Rasskazov S.V., Chebykin E.P., Ilyasova A.M., Snopkov S.V., Chuvashova I.S. Expanding seismicity and paragenetic variations of groundwater compositions in the Baikal Rift System in 2020–2025: Current state assessment of the earth’s crust // Geology and Environment. 2025. Vol. 5, No. 2. P. 69–123.
Rasskazov S.V., Chebykin E.P., Zamana L.V., Orgilyanov A.I., Sankov V.A., Ilyasova A.M., Chuvashova I.S. Uranium components of groundwater from Chita Transbaikalia: comparison with uranium components of groundwater from adjacent Inner Asia // Geology and Environment. 2024а. Vol. 4, No. 3. С. 113–132. https://doi.org/10.26516/2541 -9641.2024.3.113.
Rasskazov S.V., Ilyasova A.M., Bornyakov S.A., Batsaikhan Ts., Demberel S., Chebykin E.P. Chemical hydrogeodynamics in the Ulaanbaatar groundwater reservoir in 2012–2023: comparison with the chemical hydrogeodynamics of reservoirs on the coast of Lake Baikal // Geology and Environment. 2023a. Vol. 3, No. 4. P. 146–160.
Rasskazov S.V., Ilyasova A.M., Bornyakov S.A., Chebykin E.P. Goryachinsk reactivation of the Yambui transtension zone in 2013–2015: Coseismic chemical hydrogeodynamics of groundwater on the southeastern coast of Middle Baikal // Geology and Environment. 2023b. Vol. 3, No. 4. P. 108–145. https://doi.org/10.26516/2541-9641.2023.4.108.
Rasskazov S.V., Ilyasova A.M., Chebykin E.P. Temporal changes in 234U/238U, 234U, and element concentrations in mineral water from carbonates in the Olkha well, southern Siberian platform: Conditions for displaying Cherdyntsev-Chalov effect // Geology and Environment. 2024. Vol. 4, No. 2. P. 151–163. DOI 10.26516/2541-9641.2024.2.151
Rasskazov S.V., Ilyasova A.M., Chuvashova I.S., Chebykin E.P., 2018. The 234U/238U variations in groundwater from the Mondy area in response to earthquakes at the termination of the Tunka Valley in the Baikal Rift System. Geodynamics & Tectonophysics 9 (4), 1217–1234. doi:10.5800/GT-2018-9-4-0392.
Rasskazov S., Ilyasova A., Bornyakov S., Chuvashova I., Chebykin E. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia // Front. Earth Sci. 2020. Vol. 14, No. 4. P. 711–737. doi.org/10.1007/s11707-020-0821-5
Rasskazov S.V., Ruzhich V.V., Kovalenko S.N. Consequences and threat assessment of earthquakes: introduction // Geology and Environment. 2023c. Vol. 3, No. 1. P. 5–21. DOI 10.26516/2541-9641.2023.1.5.
Rasskazov S.V., Ilyasova A.M., Snopkov S.V., Chuvashova I.S., Bornyakov S.A., Chebykin E.P. Chemical hydrogeodynamics of the Kultuk groundwater reservoir versus paragenetically related large earthquakes in the central Baikal Rift System, Siberia // Journal of Earth System Science. 2024. Vol. 133, 190. https://doi.org/10.1007/s12040-024-02392-2.
Reddy D.V., Nagabhushanam P., Sukhija B.S. Earthquake (M 5.1) induced hydrogeochemical and δ18O changes: validation of aquifer breaching-mixing model in Koyna, India // Geophys. J. Int. 2011. Vol. 184, No. 1. P. 359–370. doi:10.1111/j.1365-246X.2010.04838.x
Shi Z., Wang G., Manga M., Wang C.Y. Mechanism of co-seismic water level change following four great earthquakes – insights from co-seismic responses throughout the Chinese mainland // Earth Planet. Sci. Lett. 2015. Vol. 430. P. 66–74. doi:10.1016/j.epsl.2015.08.012
Sobolev G.A. Fundamentals of earthquake prediction. Nauka, Moscow, 1993. 313 p.
Sukhija B.S., Reddy D.V., Nagabhushanam P., Kumar B. Significant temporal changes in13C in dissolved inorganic carbon of groundwater related to reservoir-triggered seismicity // Seismol. Res. Lett. 2010. Vol. 81, No. 2. P. 218–224. doi:10.1785/gssrl.81.2.218
Tsunogai U., Wakita H. Precursory chemical changes in ground water: Kobe earthquake, Japan // Science. 1995. Vol. 269, No. 5220. P. 61–63. doi:10.1126/science.269.5220.61 PMID:17787705
Rasskazov Sergei Vasilevich,
doctor of geological and mineralogical sciences, professor,
664025, Irkutsk, st. Lenina, 3,
Irkutsk State University, Faculty of Geology,
Head of Dynamic Geology Char,
664033, Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
Head of the Laboratory for Isotopic and Geochronological Studies,
tel.: (3952) 51–16–59,
email: rassk@crust.irk.ru
Ilyasova Aigul Maratovna,
candidate of geological and mineralogical sciences, leading engineer,
664033, Irkutsk, Lermontova st., 128,
Institute of the Earth's Crust SB RAS,
email: ila@crust.irk.ru
Yi-ming Sun,
Researcher,
Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin, China,
email: 894817259@qq.com
Snopkov Sergei Viktorovich,
Candidate of Geological and Mineralogical Sciences,
664025, Irkutsk, Lenin sr., 3,
Irkutsk State University, Faculty of Geology,
Associate Professor,
664074, Irkutsk, Kurchatov st., 3,
Siberian School of Geosciences, Irkutsk National Research Technical University,
Leading Researcher,
email: snopkov_serg@mail.ru.
Chebykin Eugene Pavlovich,
Candidate of Chemical Sciences, Senior Researcher,
664033, Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
664033, Irkutsk, st. Ulan-Batorskaya, 3,
Limnological Institute SB RAS,
email: epcheb@yandex.ru
|
Article received: 12.06.2025; corrected: 24.06.2025; accepted: 27.06.2025.
FOR CITATION: S.V. Rasskazov, A.M. Ilyasova, Yi-Min Sun, S.V. Snopkov, E.P. Chebykin Variations of U components and Si–Na/Li temperatures in groundwater reservoirs on the southern flank of the South Baikal Basin and Tunka Valley in 2012–2024: relationship between axial and flank seismogenic deformations in the Baikal Rift System // Geology and Environment. 2025. Vol. 5, No. 2. P. 124-149. DOI 10.26516/2541-9641.2025.2.124. EDN: ZRWIAJ