Кнопка
. Vol. , No.

Number of views of the article: Visitor counter Counter.CO.KZ



 

UDC 550.42: 552.3

https://doi.org/10.26516/2541-9641.2025.3.94

EDN: VIBTBF

Contrast Evolution of Indian and North Asian Tectonosphere: Pb-Isotope Ages of Deep Sources for Carbonatite-Alkaline Igneous Complexes and Ba–Sr Signatures of Rocks

S.V. Rasskazov1,2, T.A. Yasnygina1, I.S. Chuvashova1, E.V. Saranina1,3

1Institute of the Earth's Crust SB RAS, Irkutsk, Russia

2Irkutsk State University, Irkutsk, Russia

3Vinogradov Institute of Geochemistry SB RAS, Irkutsk, Russia

Abstract. To evaluate similarities and dissimilarities of the sources for carbonatite magmatism in India and North Asia, Neoproterozoic Samalpatti and Sevattur, and Cretaceous-Paleogene Amba Dongar massifs of the India are compared with Neoproterozoic – Early Paleozoic Tomtor and Cretaceous Malo-Murunsky and Weishan massifs of the North Asia. From Pb isotope data on carbonatites, it is inferred that the 800 Ma Samalpatti carbonatite melts were generated from the 4.26 Ga mantle protolith of the Early Earth that was remarkably different from the primordial mantle reservoir in the solidified magma ocean in terms of low initial μ. After separation of the Indian subcontinent from Gondwana and its connection with Asia, silicate melts of the Deccan LIP were generated from the 2 Ga protoliths of the Middle Geodynamic Epoch in the Earth evolution. The 66 Ma Amba Dongar carbonatites were derived from the Early Earth mantle protoliths modified by the ca. 2 Ga event. Cretaceous carbonatites of the Malo-Murunsky and Weishan massifs show origin from the protoliths of 3.45 and 2.2 Ga, respectively. No carbonatite magmatism displayed in North Asia at the latest geodynamic stage (i.e., in the past 90 Ma), although a role of carbonatites in India persistently increased. During this time, the tectonosphere of North Asia was affected by reorganization resulted in ascent of primordial material from the deep mantle. The different source ages and timing of carbonatites from India and North Asia are emphasized by inheritance of Ba–Sr components in old and young carbonatites from India and specific trends of Ba and Sr in those from North Asia.

Keywords: carbonatites, nepheline syenites, Neoproterozoic, Cretaceous, Paleogene, Ba, Sr, trace elements, 206Pb/204Pb, 207Pb/204Pb, 143Nd/144Nd, 87Sr/86Sr, India, North Asia

Introduction

Isotopic systematics of deep sources for oceanic igneous rocks based on Pb, Nd, and Sr isotopic ratios in terms of the end members DMM, HIMU, EM1, and EM2 (Zindler and Hart, 1986), supplemented by one more composition FOZO (Hauri et al., 1994), has a genetic sense (Dickin, 2018). Since the evolution of continents and oceans differs significantly, the isotopic systematics of deep sources of oceanic igneous rocks cannot be used for deep sources of continental igneous rocks. The lack of a generalized approach to definition of deep sources for continental igneous rocks results in studies of their individual regional components (Carlson, Hart, 1988; Rasskazov, 2001; Dickin, 2018).

Meanwhile, a general approach to the study of continental mantle magma sources is still required. In Asia, sources of erupted late Phanerozoic mantle magmas are systematized by their deep protoliths ages, obtained using uranogenic Pb isotopes (Rasskazov et al., 2020). The evolution of mantle sources is recognized from the solidified Hadean magma ocean of the Earth to the present. Other radiogenic isotopes show auxiliary signatures of processes in mantle sources that developed in different stages of the Earth evolution.

The evolution of U–Pb, Sm–Nd, and Rb–Sr isotopic systems is governed by different processes regulating ratios of parent and daughter radionuclides in the continental mantle and crust. The 238U/204Pb ratio (μ) may be affected by removal of the oxidized form of uranium by water and also by concentration of lead in sulfides or silicates. The 147Sm/144Nd ratio depends on the distribution of minerals – concentrators of medium REE, and the 87Rb/86Sr ratio depends on the distribution of minerals – concentrators of K and Ca. Different geochemical behavior of chemical elements may result in lack of coordination between time-integrated accumulations of different radiogenic isotopes in source regions for continental magmatic rocks.

Isotope-geochemical interpretations of sources for magmatic rocks are assumed initial isotope ratios. No correction for the age of the measured ratios is required for young basalts, although it is still necessary, if rocks have high ratios of parent/daughter nuclides (e.g. rhyolites in the Rb−Sr isotope system). Due to the predominance of 238U (making up 99.2743% of the total uranium) in volcanic rocks of young ages (Mesozoic – early and middle Cenozoic), 206Pb/204Pb may shift slightly at high μ. At the same uranium concentrations, the 207Pb/204Pb ratio increases insignificantly. Age corrections for isotopes of older rocks require accurate element concentration determinations. Also, recalculated data should be referred to age-corrected reference compositions of isotopic systems (for example, to the primordial mantle).

In the source region of continental basaltic melts, the presence of carbonate is often assumed from trace element abundances in rocks (e.g. Zr–Hf) (Dupuy et al., 1992). Carbonatite deep sources are considered to belong to the mantle. In continental areas, carbonatites are systematized on the diagram of initial strontium and neodymium isotope ratios taking into account of the structural position of massifs. Carbonatites in association with K-alkaline rocks in areas between the Aldan and Anabar shields of the Siberian platform basement and those around the Siberian platform are characterized by enriched and depleted Nd–Sr isotope compositions, respectively (Vladykin, Tsaruk, 2003; Vladykin, 2005, 2009; Vladykin, Pirajno, 2021).

In the southern and southeastern parts of India, occurrences of Precambrian alkaline rocks with a wide time interval from 1600 to 600 Ma from the Eastern Ghats have been reported (e.g. Schleicher et al., 1998). The Indian subcontinent was part of Gondwana in combination with those of Africa, Australia, and Antarctica, separated from these at around 130–100 Ma ago, and later on, accreted to Asia at around 66–32 Ma ago (Beck et al., 1995; McLoughlin, 2001; Khan et al., 2004; Sarkar et al., 2023). The Indian tectonosphere activities were marked over time by deep magmatism and mountain building activities. From such a dramatic change in structural setting of the Indian subcontinent, a comparative geochemical study of carbonatite sources and those of associated deep igneous rocks during its incorporation into Gondwana and its connection with Asia is of particular interest.

Long before the Gondwana breakup, at around 800 Ma, the Samalpatti and Sevattur massifs (Ackerman et al., 2017), which lie on the southwest part of the Indian subcontinent, were formed. With the discovery of benstonite carbonatites (Semenov et al., 1971), Samalpatti and Joggipatti massifs with Ba–Sr carbonatites similar to the carbonatites of Malo-Murunsky syenite massif (Vorobyov et al., 1992; Vorobyov, 2001; Vladykin et al., 2003, 2008) received worldwide attention. The 66 Ma Amba Dongar complex of alkaline rocks with carbonatites in the Chhotaudepur, which is located in the northwestern part of India, is genetically associated with the Deccan Large Igneous Province (LIP) (Simonetti et al., 1995).

The aim of this work is to compare Pb-isotope ages and Ba–Sr abundances of carbonatites from the key igneous complexes of India (Samalpatti and Amba Dongar) with carbonatites of North Asia to elucidate the origin of their source protoliths in the context of the tectonosphere evolution in the Earth’s history. The preliminary discussion of data was presented by Rasskazov et al. (2024).

Geological settings of carbonatites in India

The Samalpatti massif

The carbonatite massifs of Southern India are located southwards of the Dharwar Craton within the Precambrian Southern Ghats granulite terrane along the NE–SW-trending trans-crustal shears. The carbonatites occur in the alkaline-carbonatite complexes that are located within the NE–SW trending fault system known as Dharmapuri Rift (Aranha et al., 2023).

The carbonatite massifs form a chain (from northeast to southwest): Sevattur (Koratti), Joggipatti, Samalpatti and Pakkanadu. In addition to carbonatites, pyroxenites, syenites and (rarely) dunites with minor pegmatite and fenite are common in this area (Schleicher et al., 1998; Srivastava et al., 2005). Carbonatite bodies of Paleoproterozoic age are mentioned also near the Pakkandu massif, closer to the Dharwar Craton (Pandit et al., 2002).

In the Samalpatti massif, syenites predominate with subordinate pyroxenites, dunites, alkaline gabbros, and carbonatites. In the Samalpatti, Joggipatti, and Sevattur massifs, benstonite carbonatites are reported (Srivastava, 1998; Vladykin et al., 2003; 2008; Rampilova et al., 2021). In the Samalpatti massif, benstonite carbonatites occur as a small dike (Fig. 1).

Fig 1 Карта массивов Южной Индии Чцвет

Fig. 1. Location of key carbonatite massifs in South India (a), spatial distribution of rock massifs associated with carbonatites (b), and geological structure of the Samalpatti massif (c). CB – location of benstonite carbonatite. Scheme (b) was compiled after (Schleicher et al., 1998; Mahapatro et al., 2023), scheme (c) – after (Vladykin et al., 2008; Ackerman et al., 2017).

Рис. 1. Местоположение ключевых массивов с карбонатитами Севаттур (Самалпатти) в Южной Индии (а), пространственное распределение массивов пород, ассоциирующих с карбонатитами (б) и геологическое строение массива Самалпатти (в). CB – местоположение бенстонитового карбонатита. Схема (б) составлена с использованием работ (Schleicher et al., 1998; Mahapatro et al., 2023), схема (в) – с использованием работы (Vladykin et al., 2008; Ackerman et al., 2017).

Carbonatites were dated by various methods. First, a preliminary 700±30 Ma age was measured by K−Ar method on phlogopite for the Joggipatti massif (Moralev et al., 1975). Then, a 801±11 Ma age was obtained by the whole rock Pb−Pb isochron method for the Sevattur massif (Schleicher et al., 1997) and a 771±18 Ma age was measured by Rb–Sr method for the same rocks (Kumar, Gopalan, 1991). These dating results were comparable with each other within the measurements errors. The age of the Sevattur igneous complex is generally accepted to be about 800 Ma (Schleicher et al., 1997; 1998; Ackerman et al., 2017; Randive, Meshram, 2020).

The Amba Dongar massif

This massif belongs to the Chhotaudepur series of the Deccan LIP that occupies an area of 1.8 million km2, mainly in the central, western and northwestern parts of the Hindustan Peninsula (Fig. 2). Volcanism of the province, especially alkaline, is rift-related (Sheth, Chandrasekharam, 1997). In the central part of India, there are the Narmada and Tapi rifts, in the western part – the Kutch and Cambay ones. The rifts converge on the western coast of India in the Cambay structural junction.

Fig 2 Декан карта3Ч

Fig. 2. Structural setting of the Chhotaudepur igneous complex in Deccan LIP (a), age ranges of the rock province (b), and map of rocks of Chhotaudepur complex. The schemes (a) and (b) are compiled using data from (Sheth et al., 2001a,b; Knight et al., 2003; Mahoney et al., 2002; Paul et al., 2008; Foulger, 2010; Chalapathi Rao, Lehmann, 2011; Peng et al., 2014). The geological map of panel (c) is modified after (Kumar et al., 1996; Gwalani et al., 1994).

Рис. 2. Структурное положение магматических комплексов Чхотаудепур в провинции Декан (а), возрастные интервалы пород этой провинции (б) и карта комплекса пород района Чхотаудепур (в). Схемы (а) и (б) составлены с использованием данных (Sheth et al., 2001a,б; Knight et al., 2003; Mahoney et al., 2002; Paul et al., 2008; Foulger, 2010; Chalapathi Rao, Lehmann, 2011; Peng et al., 2014). Геологическая карта (в) составлена по данным (Kumar et al., 1996; Gwalani et al., 1994) с изменениями.

Volcanic rocks of the Deccan LIP are mainly tholeiitic basalts and, to a lesser extent, basaltic andesites. There are alkaline rocks (lavas, dikes and intrusions, including those in alkaline complexes with carbonatites), lamprophyres (mainly dikes), kimberlites (pipes), dacites and rhyolites (lavas). Tholeiitic basalts are widespread throughout the province. These show similar geochemical signatures in the western part of India, near Mumbai (Mahabaleshwar, Ambenali, etc.) and in the Narmada-Son and Tapi rifts (Peng et al., 2014). Early volcanism in the north and northwest India exhibits lamprophyre dikes of various compositions (Paul et al., 2008; Vijayan et al., 2016). In the northern and northwestern parts of the province, alkaline and tholeiitic basalts occur in the Narmada and Kutch rifts (Mahoney et al., 1985; Paul et al., 2008; Sen et al, 2009), alkaline syenites, melanephelinites, lamprophyres are widespread in Murud, Mumbara, Amba Dongar, Chhotaudepur (Melluso et al., 2002; Hari et al., 2014). In the Pavagadh mountain area, picrites, high-Mg basalts, and basaltic andesites are followed by rhyolites (Sheth, Melluso, 2008). Beside the Pavagadh region, basalts are associated with rhyolites and dacites in the central Deccan Province. There are high- and low-titanium picrobasalts in the northwest and west of the province (Pavagadh, Rajpipla, Saurashtra) (Melluso et al., 2006).

Rocks from the Deccan LIP cover an age interval of 73–60 Ma. The earliest volcanic rocks of 73–72 Ma are known in Pakistan (Mahoney et al., 2002). By 40Ar/39Ar method, the thick lava stratum of the Deccan Plateau was constrained within a short time interval. 33 dates obtained in different laboratories for a 2-kilometer lava sequence of the Western Ghats fall in the range of 70–62 Ma with a maximum at 65.5 Ma (the standard MMhb-1 with the age of 520.4 Ma was used for correction) (Hofmann et al., 2000; Knight et al., 2003). Younger dates are characteristic of dolerite sills, effusive and intrusive rocks of differentiated composition. A Rb–Sr isochron of 61.5 ± 1.9 Ma was obtained for the rhyolites of Bombay (Lightfoot et al., 1987), and two 40Ar/39Ar dates of 60.4 ± 0.6 and 61.8 ± 0.6 Ma – for trachytes of the same area (Sheth et al., 2001a). Dolerites from a sill in the Bombay area yielded 40Ar/39Ar age of 60.5 ± 1.2 Ma (all dates are relative to the 520.4 Ma age for the MMhb-1 standard (Sheth et al., 2001b)). Alkaline and carbonatite magmatism preceded or occurred simultaneously with the traps ((Chalapathi Rao Lehmann, 2011) and references therein). Diamondiferous kimberlite pipes were emplaced in central India (Bastar craton) before or simultaneously with the trap maximum (Behradi) and after it (Kodomali) (Mainkar, Lehman, 2007; Lehman et al., 2010; Chalapathi Rao, Lehmann, 2011).

The Chhotaudepur area is divided into the subprovinces: 1) Amba Dongar, a carbonatite complex in the southeastern part; 2) Sirivasan-Dugdha, trachytes southwest of Amba Dongar; 3) Phenai Mata, alkaline rocks and tholeiitic gabbro and gabbro-anorthosite in the northeastern part; 4) Panwad-Kawant, lamprophyre dykes north of Amba Dongar; and 5) Bakhatgarh-Phulmahal, mafic and ultramafic dykes of varying compositions to the east of the study area (Gwalani et al., 1993). The Amba Dongar carbonatites intrude a 68 Ma old tholeiitic basalt flow and occupy the central depression of this igneous complex (Ray et al., 2003; Ray and Shukla, 2004). The Sirivasan sill of the Chhotaudepur alkaline carbonatite complex extends for approximately 11 km with an average width of about 150 m. The carbonatites include fragments of sandstones, metamorphic rocks (gneisses, schists, phyllites, quartzites), basalts, as well as minerals: quartz, pyroxene, olivine and others. The Rb–Sr age of the sill is 63±2 Ma (Viladkar, Gittins, 2016).

Sampling and analytical methods

In the Chhotaudepur area, lamprophyre and phonolite dikes were sampled near alkaline syenite, gabbro-diorite and dolerite bodies to the north of the Amba Dongar carbonatite complex (Hari et al., 2011; 2014) (lamprophyres – L1,2,3), basalts and picrobasalts of the Phenai Mata Dongar area, alkali feldspar syenites AFS-1 near Phenai Mata Dongar and AFS (in the northeastern part of the Chhotaudepur area) (Hari et al., 2014). Gabbros similar to the studied rocks are known in the eastern part of the Phenai Mata (Hari et al., 2011) (Fig. 2 c).

Trace elements of rocks were determined by inductively coupled plasma mass spectrometry (ICP-MS). Chemical sample preparation was performed by microwave acid decomposition with a mixture of HNO3 and HF. For more complete decomposition of silicates, a sample was re-evaporated with HF and H2O2. Before measurement, internal standards of In and Bi were added to the sample, corrections were calculated by interpolation. Measurements were performed on an Agilent 7500ce quadrupole mass spectrometer. Multielement standard solutions and standard reference materials of the United States Geological Survey (USGS) (BIR-1, DNC-1, BHVO-1, AGV-1, BCR-2, RGM-1) and the Geological Society of Japan (JB-1A) were used for calibration and control of the precision and accuracy of the analysis. The major oxides were analyzed using a set of classical chemical-analytical methods of "wet chemistry" included flame photometry, spectrophotometry, gravimetric, atomic absorption, etc.

Sr and Nd isotope ratios were analyzed by the technique described in the monograph (Rasskazov et al, 2012). The measurements were performed on a Finnigan MAT 262 multicollector thermal ionization mass-spectrometer. The accuracy of the isotope analysis was systematically monitored according to the JNd–1 (Japan) and NBS987 (USA) standards. For JNd–1, the obtained value was 143Nd/144Nd = 0.512104 ± 4 (2σ), with the recommended value of 0.512103; for NBS SRM–987, the values were 87Sr/86Sr = 0.710274 ± 14 (2σ) and 0.710261 ± 12 (2σ), with the recommended ratio of 0.710250. The results of the analytical work are presented in Tables 1 and 2.

Table 1

Contents of major oxides and trace elements and isotope ratios of Sr and Nd in the representative samples of rocks from the Chhotaudepur complex, Western India

 

1

2

3

4

5

6

7

Sample

RPV-2

RCD-10

RPV-4

RCD-27

RCD-30

RCD-33B

RCD-29

Rock

BA

Basalt

Basalt

Phonolite

Foidite

Basanite

PhT

SiO2, wt.%

50.55

47.14

47.13

51.47

50.81

45.02

47.28

TiO2

2.19

2.45

1.82

0.57

0.55

2.65

2.15

Al2O3

12.42

13.77

10.40

20.33

21.32

13.29

17.72

Fe2O3

4.48

5.56

4.00

3.64

2.54

5.89

4.65

FeO

6.36

6.04

7.19

2.17

2.21

4.29

4.03

MnO

0.15

0.16

0.17

0.25

0.17

0.19

0.18

MgO

7.52

7.06

13.43

0.48

0.26

5.77

3.31

CaO

10.38

10.74

10.44

3.00

3.03

11.48

6.94

Na2O

2.09

2.18

1.77

7.58

9.35

3.75

4.45

K2O

1.32

0.88

0.80

5.89

6.98

2.72

4.29

P2O5

0.26

0.30

0.19

0.12

0.08

0.76

0.65

H2O

0.73

1.00

0.59

0.22

0.12

0.14

0.30

LOI

1.50

2.42

2.21

4.36

2.24

3.68

3.98

Summa

99.95

99.69

100.14

100.08

99.66

99.63

99.93

Li, ppm

6.0

7.1

5.7

24.7

16.7

17.3

24.1

Be

1.3

1.2

1.0

6.6

5.1

3.0

3.1

Sc

35.6

33.5

36.5

2.2

1.9

24.0

11.4

V

332

330

290

103

104.7

309

188

Cr

374

228

854

12.6

5.8

102

21

Co

47

45

64

3.5

3.5

33

20

Ni

143

103

369

11

5.4

36

19

Cu

240

229

115

10

8.2

80

54

Zn

161

155

93

162

121.5

104

107

Ga

19

20

15

30

27.5

22

23

Rb

43.0

20.7

19.5

161.2

123.4

72.7

106.1

Sr

327

376

252

3007

3466.5

1154

1768

Y

26.6

27.4

21.3

11.4

10.0

34.2

32.2

Zr

167

182

135

883

511.5

378

486

Nb

27.1

29.8

19.2

272.4

171.9

120.5

154.3

Cs

0.64

0.42

0.56

0.73

2.9

2.72

2.61

Ba

336

246

212

868

4517.7

1761

2783

La

29.4

27.2

19.2

239.9

159.7

139.7

153.0

Ce

63.8

59.8

43.0

289.8

217.7

258.1

261.1

Pr

7.85

7.36

5.60

19.89

17.3

27.45

26.28

Nd

30.8

29.6

23.0

44.9

44.0

97.9

88.7

Sm

6.33

6.53

5.08

4.09

4.3

14.76

12.48

Eu

1.94

2.12

1.63

1.03

1.0

3.98

3.64

Gd

6.37

6.62

5.08

3.27

3.1

12.71

10.99

Tb

0.96

0.99

0.80

0.42

0.4

1.48

1.33

Dy

5.18

5.42

4.25

1.79

1.6

6.93

6.27

Ho

1.06

1.11

0.89

0.42

0.4

1.35

1.25

Er

2.70

2.72

2.20

0.99

0.9

3.34

3.19

Tm

0.39

0.39

0.31

0.16

0.1

0.47

0.46

Yb

2.31

2.30

1.85

1.06

1.0

2.80

2.77

Lu

0.36

0.37

0.28

0.19

0.2

0.43

0.44

Hf

4.44

4.77

3.69

11.46

7.0

8.59

9.70

Ta

1.84

1.86

1.33

4.78

4.5

7.44

9.87

Pb

10.0

10.7

6.1

n. d.

52.4

23.9

28.4

Th

7.2

4.7

3.8

86.0

32.2

27.8

36.6

U

1.48

1.04

0.91

20.89

9.4

5.76

6.44

87Sr/86Sr

0.709497

0.705730

0.707459

0.707509

0.706494

0.707486

0.707193

2σ (Sr)

0.000012

0.000009

0.000013

0.000012

0.000011

0.000009

0.000009

(87Sr/86Sr)i

0.709149

0.705584

0.707255

0.707367

0.706400

0.707320

0.707034

144Nd/143Nd

0.512425

0.512685

0.512599

0.512398

0.512400

0.512310

0.512348

2σ (Nd)

0.000011

0.000007

0.000011

0.000004

0.000007

0.000008

0.000007

(144Nd/143Nd)i

0.512369

0.512625

0.512539

0.512628

0.512631

0.512642

0.512639

 

1 – basaltic andesite, 2 − olivine basalts, 3 – Mg-basalts, 4−5 – phonolites and foidites, 6−7 − lamprophyres, LOI is loss on ignition, BA – basaltic andesite, PhT – phonotephrite. Initial isotope ratios are recalculated to an age of 66 Ma, n. d. – not determined.

Table 2

Representative compositions of carbonatites and silicate rocks from the Amba Dongar complex, Western India

 

1

2

3

4

5

6

7

8

9

Sample

2

3

4

5

ADC-11

ADC-14

ADF-4

ADN-12

ADB-8

Rock

Ca-carb

(sövite)

Ca-carb

(alvikite)

Si-carb

Fe-carb

Ca-carb

Ca-carb

Fe-carb

nephe-

linite

basalt

SiO2, wt.%

15.17

4.48

33.06

5.99

4.28

2.84

32.7

43.8

48.1

TiO2

0.30

0.31

0.68

0.88

0.15

0.14

0.09

0.83

2.27

Al2O3

2.32

0.51

6.01

0.86

0.48

0.38

0.36

14.2

14

Fe2O3

5.61

1.30

4.85

10.29

1.86

1.05

6.92

7.19

12.8

FeO

1.88

0.71

1.83

3.49

n. d.

n. d.

n. d.

n. d.

n. d.

MnO

0.34

0.29

0.28

0.82

0.54

0.14

3.15

0.27

0.17

MgO

5.83

2.74

4.84

6.75

0.16

0.42

5.96

1.44

6.39

CaO

37.68

49.05

25.77

36.80

48.5

51.7

22.5

12.5

10.8

Na2O

0.29

n. d.

1.75

n. d.

0.01

n. d.

0.08

5.64

2.12

K2O

0.20

n. d.

2.90

n. d.

0.08

0.03

n. d.

1.58

0.54

P2O5

0.22

0.31

0.73

0.69

1.71

1.37

1.79

0.6

0.25

H2O

3.03

1.95

2.28

2.22

n. d.

n. d.

n. d.

n. d.

n. d.

CO2

25.56

38.56

16.52

31.49

n. d.

n. d.

n. d.

n. d.

n. d.

LOI

28.59

40.51

18.81

33.71

39.2

39.4

20.3

10.7

1.74

Total

98.43

100.22

101.52

100.28

96.97

97.47

93.85

98.75

99.18

Sc, ppm

n. d.

n. d.

n. d.

n. d.

1.7

2.2

1.2

2.2

28

V

n. d.

n. d.

n. d.

n. d.

216

50

178

276

309

Cr

16

10

11

11

n. d.

n. d.

n. d.

n. d.

n. d.

Ni

22

13

19

14

5.3

5.7

2.3

1.8

72

Cu

60

53

52

63

n. d.

n. d.

n. d.

n. d.

n. d.

Zn

12

14

8

16

379

8

1549

109

59

Rb

19

18

26

43

7.21

4.02

0.54

56

11

Sr

4721

4072

2601

4989

3773

6007

3764

3130

565

Y

111

105

106

223

211

140

n. d.

37

32

Zr

235

211

227

99

21

187

24

503

161

Nb

341

229

425

255

350

2168

76

327

23

Ba

2933

3869

2775

6235

19075

2605

28824

1850

230

La

302

522

1148

1192

2035

505

6969

168

24

Ce

465

633

1758

1911

2995

1138

7070

258

54

Pr

n. d.

n. d.

n. d.

n. d.

254

116

467

16

5

Nd

145

141

427

618

709

387

1028

70

29

Sm

21.5

20.0

52.3

87

77

63

91

8.0

5.71

Eu

4.75

4.35

10.6

18

20

18

27

2.2

1.7

Gd

13.6

14.3

34.2

53.7

74

52

115

8.2

5.8

Tb

n. d.

n. d.

n. d.

n. d.

7

6

9

0.9

0.8

Dy

7.42

10.2

22.5

27.2

33

28

39

4.7

4.8

Ho

n. d.

n. d.

n. d.

n. d.

5.9

4.6

7.1

0.9

0.9

Er

4.12

6.0

11.8

13.4

19

12

23

2.6

2.6

Tm

n. d.

n. d.

n. d.

n. d.

2.3

1.2

2.8

0.3

0.3

Yb

3.05

3.84

8.39

7.95

14

6.7

16

2.2

2.2

Lu

0.51

0.56

0.59

1.28

1.8

0.8

1.9

0.3

0.3

Hf

n. d.

n. d.

n. d.

n. d.

0.5

5

0.5

7.2

3.6

Ta

n. d.

n. d.

n. d.

n. d.

0.1

11

n. d.

4.0

1.5

Pb

n. d.

n. d.

n. d.

n. d.

618

20

88

32

3.3

Th

22

17.5

11.8

6.0

111

345

142

18

4.4

U

n. d.

n. d.

n. d.

n. d.

63

12

0.4

7.8

1.0

87Sr/86Sr

n. d.

n. d.

n. d.

n. d.

0.705600

0.706353

0.707393

0.706291

0.707193

2σ (Sr)

n. d.

n. d.

n. d.

n. d.

n. d.

0.000006

0.000006

0.000005

0.000006

(87Sr/86Sr)i

n. d.

n. d.

n. d.

n. d.

0.705595

0.706351

0.707393

0.706243

0.707139

144Nd/143Nd

n. d.

n. d.

n. d.

n. d.

n. d.

0.512426

0.512483

0.512307

0.512651

2σ (Nd)

n. d.

n. d.

n. d.

n. d.

n. d.

0.000011

0.000006

0.000004

0.000007

(144Nd/143Nd)i

n. d.

n. d.

n. d.

n. d.

n. d.

0.512385

0.512460

0.512277

0.512600

206Pb/204Pb

n. d.

n. d.

n. d.

n. d.

19.17

19.30

19.18

19.25

19.25

207Pb/204Pb

n. d.

n. d.

n. d.

n. d.

15.74

15.72

15.71

15.73

15.84

208Pb/204Pb

n. d.

n. d.

n. d.

n. d.

39.69

43.30

39.75

39.81

39.86

(206Pb/204Pb)i

n. d.

n. d.

n. d.

n. d.

19.10

18.90

19.18

19.09

19.05

(207Pb/204Pb)i

n. d.

n. d.

n. d.

n. d.

15.74

15.71

15.71

15.72

15.83

(208Pb/204Pb)i

n. d.

n. d.

n. d.

n. d.

39.65

39.32

39.41

39.69

39.57

 

1−4 – (Shrivastava, 1997), mean contents for the main types of rocks with the number of analyzes is from 2 to 24; 5−9 – (Chandra et al., 2018; 2019), n. d. – not determined, * – Fe2O3 tot

Results

Major oxides

In the Na2O+K2O – SiO2 diagram, the rocks from the Deccan LIP are subdivided into tholeiitic and alkaline series, similar to those of the tholeiitic and alkaline series of the Hawaiian Islands. Data field of tholeiitic basalts from the Kutch and Pavagadh regions overlaps the boundary area of the alkaline series. In the Chhotaudepur region, there are rocks similar to those from different areas of the Deccan LIP (Fig. 3).

Fig. 3. Alkali–silica diagram of the Cretaceous–Paleogene volcanic and subvolcanic rocks from the Chhotaudepur area in comparison with those from other areas of the Deccan LIP. Used are new analytical data from Table 1 and published data (Gwalani et al., 1993; Chandrasekharam et al., 1999; Melluso et al., 2006; Paul et al., 2008; Peng et al., 2014; Sen et al., 2009; Sheth, Melluso, 2008; Hari et al., 2011; 2014; Hari, Swarnkar, 2011; Chalapathi Rao et al., 2012; Vijayan et al., 2016; Chandra et al., 2018; Pandey et al., 2019; Rasskazov et al., 2024). Data fields for rock from the Amba Dongar carbonatite complex are shown after (Gwalani et al., 1993; Srivastava, 1997; Chandra et al., 2018; Dhote et al., 2021) M&K is the line (MacDonald, Katzura, 1964) that separates tholeiitic and alkaline series of the Hawaiian Islands.

Рис. 3. Диаграмма щелочи – кремнезем мел-палеогеновых вулканических и субвулканических пород района Чхотаудепур (а) и других районов крупной магматической провинции Декан (б). Используются новые аналитические данные табл. 1 и опубликованные данные (Gwalani et al., 1993; Chandrasekharam et al., 1999; Melluso et al., 2006; Paul et al., 2008; Peng et al., 2014; Sen et al., 2009; Sheth, Melluso, 2008; Hari et al., 2011; 2014; Hari, Swarnkar, 2011; Chalapathi Rao et al., 2012; Vijayan et al., 2016; Chandra et al., 2018; Pandey et al., 2019; Rasskazov et al., 2024). Поля пород карбонатитового комплекса Амба Донгар показаны по данным (Gwalani et al., 1993; Srivastava, 1997; Chandra et al., 2018; Dhote et al., 2021). M&K – линия (MacDonald, Katzura, 1964), разделяющая толеитовую и щелочную серии Гавайских островов.

The Chhotaudepur alkaline series involves various rocks from basalts, tephrites, and basanites to trachytes (syenites) and foidites. Petrographically, these rocks are referred to "lamprophyres" (Chalapathi Rao et al., 2012; Pandey et al., 2019). Basalt and basanite (RCD-33A, RCD-33B) fall in the combined fields of these rocks and alkali basalts of the Kutch rift (Paul et al., 2008; Sen et al., 2009). Phonotephrite (RCD-29) is located in the field of highly alkaline rocks and is comparable with the AFS-2 group of alkali feldspar rocks of this area, described in (Hari et al., 2014). The presence of alkali feldspar rocks of syenite composition (AFS-1) indicates the development of a moderately alkaline differentiated series in the Chhotaudepur area. Highly alkaline (phonolite and foidite) dykes of the Chhotaudepur area are similar in composition to the Kawant dykes (Gwalani et al., 1993) and the rocks of the Sarnu-Dandali alkaline carbonatite complex located to the north of the study area (Vijayan et al., 2016) (Fig. 3).

The Amba Dongar carbonatite complex is dominated by calcite carbonatites (sövites) and siderite carbonatites. There are nephelinites and phonolites also (Gwalani et al., 1993; Viladkar, 1994; Simonetti et al., 1995; Srivastava, 1997; Ray et al., 2000a, b; Dhote et al., 2021). Silicate rocks of this complex generally have compositions similar to those of dike rocks in other parts of the Chhotaudepur area.

 

K2O-MgO ENG 2 диаг Декан

Fig. 4. K2O versus MgO diagram of Cretaceous-Paleogene volcanic and subvolcanic rocks from the Chhotaudepur area (a) in comparison with rocks of other areas of the Deccan LIP (b). Symbols are as in Fig. 3.

Рис. 4. Диаграмма K2OMgO мел-палеогеновых вулканических и субвулканических пород района Чхотаудепур (а) и других районов крупной магматической провинции Декан (б). Усл. обозн. см. рис. 3.

Trace elements

The chondrite-normalized rare earth element (REE) patterns of the Chhotaudepur basalts and picrobasalts are almost flat. The La/Yb ratio varies from 10.2 (picrobasalt) to 12.8 (RPV-2 basaltic andesite). REE patterns of the Chhotaudepur picrobasalt samples (RCD-21, PRV-4) are well comparable with those of the Pavagadh picrobasalts and differ slightly from the NW-85 picrobasalt of the Kutch rift. The REE pattern of RCD-22 basalt corresponds to them, but differs in other element concentrations (Cs, K, Rb, Pb, P). The basaltic andesite (PRV-2) shows elevated concentrations of incompatible elements from Rb to K (Fig. 5). All Chhotaudepur basaltic rock patterns fall into the fields for the silicate basaltic rocks of the Amba Dongar except the Chhotaudepur picrobasalts that show lower heavy REE (Er−Lu) abundances.

The pyrolite-normalized trace-element patterns of the Chhotaudepur lamprophyres are similar in shape those of basalts, but enriched in incompatible elements from Cs to Sm. The patterns of basalts and lamprophyres have small K and Rb minima and a Pb maximum. Unlike the Kutch alkaline basalts, the Chhotaudepur lamprophyres have no Th–U minimum. They show higher contents of light REE. Alkaline syenite AFS-2 patterns have similar shapes, enriched in light REE and Sr.

Спектры Чхотаудепур ENG with AD

Fig. 5. Normalized patterns of elements in order of incompatibility (a, c, e) and REE patterns (b, d, f) of volcanic and subvolcanic rocks from the Chhotaudepur area, Deccan Province (new and published data). New data are: a,b – basaltic andesite and olivine basalt; c,d – lamprophire; e,f – phonolite and foidite. For comparison, the patterns of alkali syenite (Hari et al., 2014), fields of high-Mg basalts from Pavagadh and Kutch, Kutch alkali basalt and silicate rocks from Amba Dongar are shown (Paul et al., 2008; Sheth Melluso, 2008; Sen et al., 2009; Chandra et al., 2018). Data for normalization are from (McDonough, Sun, 1995).

Рис. 5. Нормированные спектры элементов в порядке несовместимости (а,в,д) и спектры РЗЭ (б,г,е) вулканических и субвулканических пород района Чхотаудепур провинции Декан (новые и опубликованные данные). Новые данные: а,б – андезибазальты и оливиновые базальты; в,г – лампрофиры; д,е – фонолит и фоидит. Для сравнения показаны спектры щелочных сиенитов (Hari et al., 2014), поля высоко-Mg базальтов Павагадха и Кутча, щелочных базальтов Кутча (Paul et al., 2008; Sheth, Melluso, 2008; Sen et al., 2009) и силикатных пород комплекса Амба Донгар (Chandra et al., 2018). Величины для нормирования из работы (McDonough, Sun, 1995).

The Chhotaudepur lamprophyres show REE patterns slightly curved downwards in the Sm to Dy range and elevated La/Yb ratios (25.4–55.1), while the phonolites-foidites have more strongly curved patterns, depleted in heavy REE (from Gd to Lu), without Eu anomaly and with even higher La/Yb values (161–226). In these parameters, they differ significantly from the AFS-1 alkaline syenites and Amba Dongar nephelinites with lower La/Yb ratio (56.3–62.6). In the left part, the normalized REE patterns of phonolites-foidites and AFS-1 alkaline syenites converge that may indicate that they originated by crystallization differentiation from the same source. The trace element patterns of phonolite and foidite are similar in shape to the pattern of AFS-2 syenite, with the exception of the Ta minimum and Sr and Pb maxima. A common feature of phonolites-foidites and AFS-2 alkaline syenite is deep minima of phosphorus. Alkaline silicate rocks from the Amba Dongar differ from these rocks in elevated P and Ti and reduced K and Rb.

Brief introduction into petrological problems of key alkaline massifs with carbonatites in North Asia

In North Asia, carbonatites are associated with alkaline rocks of both ultrapotassic and sodic compositions (Vladykin, Pirajno, 2021). To understand the formation environment of carbonatites in North Asia, a key role play the Malo-Murursky, Tomtor, and Weishan massifs.

Malo-Murunsky massif

The Malo-Murunsky massif is located in the central part of the Aldan Shield. Potassic silicate rocks from this massif were referred to lamproites (Vladykin, 1985). Carbonate rocks from this massif with high Ba and Sr concentrations were compared with benstonite carbonatites of Samalpatti (Vorobyov et al., 1992). The age of the Malo-Murunsky massif was determined by the K–Ar method at 138–132 Ma (Makhotkin et al., 1989). Studies of rocks in the Murun complex, performed over four decades, revealed a number of K-alkaline-ultramafic, basic, intermediate, and silicic (alkaline-granite) compositions as well as unique calcium-silicate ones (Ba–Sr carbonatites and charoitites) (Vorobyov et al., 1992; Mitchel et al., 1994; Konev et al., 1996; Panina, Vladykin, 1994; Vorobyov, 2021; Vladykin, Tsaruk, 2003; Vladykin, 2009; etc.). Doubts remains about whether the rocks of the Malo-Murunsky massif belong to lamproites or not (Mitchel et al., 1994; Vladykin, 2021).

In the southwestern part of the Murun complex, a 40 m thick horizontally lying body of carbonatites with high Ba and Sr contents was detected. E.I. Vorobyov et al. (Vorobyov et al., 1992; Vorobyov, 2021) and A.A. Konev et al. (1996) suggested the origin of these carbonatites from a homogeneous solid solution of Ba–Ca carbonate composition with an admixture of strontium. In the BaCO3–CaCO3 system, this solution is stable at temperatures above 850°C, below which it undergoes solid-phase transformations. These authors showed that the carbonate component of the massif consists mainly of four minerals: calcite, benstonite, and Ba–Ca carbonate (X-carbonate) in close proportions and also a small admixture of rare-earth phosphate-carbonate such as dakinshanite (Vorobyov et al., 1992). More detail studies (Konev et al., 1996) revealed other mineral phases: Sr-calcite, strontianite, Sr-witherite, olekminskite, paralsonite, burbankite, ankilite, malachite, and azurite.

The Murun protocarbonate could not have a benstonite composition that is stable at a relatively low-temperature (synthesized at room temperature). Benstonite crystallizes in the considered type of carbonatites as a result of late (postcrystallization) transformations of an earlier carbonate. Along with calcium (or calcite), magnesian (or dolomite), ferrous-magnesian (ankerite-siderite), and sodium petrochemical types of carbonatites, characterized by the predominance of the calcite end member in the carbonate phase (from ~50 mol.% to 100 mol.%), it was proposed to distinguish a fifth (strontium-barium) petrochemical type using the example of rocks from the Samalpatti and Malo-Murunsky massifs. Within this type, it was suggested to distinguished varieties of carbonatites from variations in the chemical composition of a carbonate phase and its composition. It was proposed to retain the name "benstonite" for the Indian carbonatites, but the use of this name for the Murun carbonatites was problematic. The name "strontianite-barite calcite carbonatite" was proposed. This variety of carbonatite is found on Murun complex together with calcium-strontianite and ordinary calcium carbonatite (Konev et al., 1996).

Later on, Vladykin (2009) argued that the carbonatite body of the Murun massif resulted from separation of the residual silicate-carbonate magma from silicate rocks with its crystallization in shallow conditions and effusion on the earth's surface.

Weishan massif

The Weishan carbonatite-alkaline complex is located in the southeastern margin of the North China Craton (East China, Shandong province). It is controlled by the Tanlu and Cangdong-Lanliao faults (Wang et al., 2019). REE mineralization, occurred within quartz syenite and gneiss, was controlled by NW- and NE-trending faults (Ding et al., 2022). Carbonatite veins cut through plagiogneisses and biotite gneisses of mainly Neoarchean age. The associated silicate rocks include syenite, quartz syenite, aegirine–augite syenite, alkaline granite, and lamprophyre.

K–Ar ages of 140 Ma for a syenite and 110 Ma for muscovite from carbonatite (Yang, Wooley, 2006) show intrusion of the Weishan carbonatite-alkaline massif approximately contemporaneously with the Malo-Murunsky massif. These magmatic events are close to the young Cretaceous-Paleogene Amba Dongar one in India.

Tomtor massif

The Tomtor massif is located on the eastern slope of the Anabar Shield (northeast of the Siberian platform). It has the form of a ring intrusion, the center of which is composed of carbonatites, and the periphery is mainly composed of nepheline and alkaline syenites. Yolites, lamproites, and other K-ultramafic rocks form dikes, sills, diatremes (Vladykin et al., 2014). The massif cut carbonate rocks of the Lower Riphean. Most of its surface is covered by Phanerozoic deposits of varying thickness – from ten to a few hundred meters. According to geophysical data, the Tomtor massif extends to a depth of 10 km, and its area exceeds 250 km2. Among similar massifs, it is one of the largest in the world. (Panina et al., 2016). It involves a deposit of Sc-REE-Y-Nb ores. Wide variations of C, O, and Sr isotopes indicate a complex component composition of rocks (Pokrovsky et al., 1990). New results of isotope studies revealed 2 primary magmatic trends of carbon and oxygen isotopes. With constant values of carbon isotopes, oxygen isotopes vary widely (trend I), and then both C and O increase linearly (trend II). These trends are explained by variations of temperature. It is assumed that the trends arise at different times (Ponomarchuk et al., 2024).

U–Pb and Ar–Ar ages of rocks from the massif 701–675 Ma and 414–387 Ma (Vladykin et al., 2014) indicate relatively old magmatic event that is comparable to generation of the Neoproterozoic Samalpatti massif of India.

Discussion

The origin of the Deccan LIP is controversial. On the one hand, the Cambay rift junction and Deccan Trap volcanism was assumed to be associated with the activities of the Reunion plume traced from Western India and Pakistan since ca. 70 Ma (Mahoney et al., 2002). On the other hand, the hotspot track crossing the Indian Ocean departed from India ca. 90 Ma. Later on, at the Cretaceous-Paleogene boundary, volcanism of the Deccan Province developed through melting of recycled oceanic crust without involvement of plume material (Sheth, 2005).

In interpretations of isotopic data of volcanic rocks, there are various options on contributions of mantle and crustal components from their deep sources. The Amba Dongar carbonatites have Sr–Nd–Pb isotope signatures similar to the Reunion plume material (Simonetti et al., 1995; Ray et al., 2000b). Variations in Sr isotope compositions of the Amba Dongar carbonatites were interpreted in connection with the processes of assimilation by deep magmas of the lower crustal material (ca. 5 %) and fractional crystallization (Ray et al., 2000b). The 3He/4He isotope ratios determined for clinopyroxenes and olivines of the Deccan alkaline complexes is close to the 3He/4He isotope ratios of these minerals in the Reunion, Iceland, and Samoa basalts, but lower than in clinopyroxenes and olivines of the Loihi alkaline basalts (Basu et al., 1993).

In the further discussion of this paper, we focus on analytical data related to: 1) timing of carbonatite magmatism of India and North Asia; 2) Pb–Nd–Sr isotopic signatures of sources, and 3) distribution of Ba and Sr.

Timing of carbonatites in India and North Asia

In the Indian subcontinent, carbonatites are found not only in India, but also in Pakistan, Afghanistan, and Sri Lanka. The whole age range of alkaline massifs with carbonatites covers time interval from >2400 Ma to <0.6 Ma (Krishnamurthy, 2019; Randive, Meshram, 2020) (Fig. 6). Timing of the Indian carbonatites is similar to the one of northeast Africa, where numerous late Phanerozoic carbonatite bodies are supplemented by the active carbonatite volcano Ol Doinyo Lengai (Dawson, 1983).

Fig 6 карта Индия от Ч2

Fig. 6. Temporal distribution of carbonatite magmatism in the Indian subcontinent (Randive, Meshram, 2020). The study subjects of this work are marked with red arrows.

Рис. 6. Диаграмма временного распространения карбонатитового магматизма на Индийском субконтиненте (Randive, Meshram, 2020). Объекты исследований настоящей работы помечены красными стрелками.

In North Asia, carbonatites are characteristic of the early to middle Phanerozoic (up to the Early Cretaceous), but no Late Cretaceous and Cenozoic carbonatites are known anywhere. The age range of Indian carbonatites (Fig. 6) at the upper limit is similar to the one of African carbonatites and differs from ages of North Asian carbonatites (Fig. 7). Such age differences of carbonatites provide an additional argument for the onset designation of the latest geodynamic processes in Asia since ca. 90 Ma (Rasskazov, Chuvashova, 2013).

Fig 7 МОДЕЛЬ

Fig. 7. Scheme of Cenozoic displaying of carbonatites at the Indian subcontinent in relation to those in North Asia. Modified after (Rasskazov et al., 2020). LOMU sources are shown in blue, ELMU sources in yellow.

Рис. 7. Схема кайнозойского проявления карбонатитов на Индийском субконтиненте в соотношении с проявлением карбонатитов в Северной Азии. Схема из работы (Rasskazov et al., 2020) с изменениями. Синим цветом обозначены источники LOMU, желтым – источники ELMU.

Pb isotope signatures of deep sources

On the diagram of initial isotope ratios of uranogenic Pb (207Pb/204Pb – 206Pb/204Pb), data points of carbonatites from the Neoproterozoic Samalpatti massif are approximated by a line with a slope corresponding to an age of 4.26 Ga. Carbonatite samples of the neighboring Neoproterozoic Sevattur massif are shifted above the trend of the Samalpatti massif and are approximated by a line yielding the same slope with a larger dispersion (Fig. 8a). This Hadean age estimate for carbonatite sources of the Neoproterozoic massifs extends beyond the age interval of 4.54–4.44 Ga proposed for the solidified magmatic ocean of the Earth and is compared with the estimates of the earliest secondary isochrones obtained for the later mantle protoliths of the early Earth (in the range of 4.44–4.0 Ga), which are exhibited by protoliths in the sources of Quaternary basalts of Jeju Island in the southern part of the Sea of Japan and of Cretaceous-Paleogene basalts of the South Gobi (Rasskazov et al., 2020).

Fig 9 Pb isot Somalpatty

Fig. 8. Age estimates of protoliths in carbonatite sources for the Samalpatti and Sevattur massifs on the diagram of 207Pb/204Pb – 206Pb/204Pb initial ratios (at 800 Ma) (a) and igneous rocks from the Deccan LIP (b). Panel (a) uses data from (Schleicher et al., 1998; Ackerman et al., 2017). Panel (b) shows Low and Elevated m Viscous Protomantle Reservoirs (LOMUVIPMAR and ELMUVIPMAR, respectively), discrimination lines of the LOMU, ELMU, and HIMU compositions, and data compilation after (Rasskazov et al., 2020) with additions on carbonatites and basanite from Amba Dongar (Simonetti et al., 1995, 1998). The position of geochrons 4.0, 4.44 and 4.51 Ga is calculated relative to the Nanton composition of the iron meteorite Canyon Diablo that designates the onset of the CAI (calcium-alumina inclusions) event of 4.5673 Ga (Blichert-Toft et al., 2010).

Рис. 8. Оценки возраста протолитов в источниках карбонатитов массивов Самалпатти и Севаттур на диаграмме начальных отношений 207Pb/204Pb206Pb/204Pb (на 800 млн лет назад) (а) и магматических пород провинции Декан (б). На панели (а) использованы данные (Schleicher et al., 1998; Ackerman et al., 2017). На панели (б) приведены резервуары вязкой протомантии с низким и повышенным m (соответственно, LOMUVIPMAR и ELMUVIPMAR), линии дискриминации составов LOMU, ELMU и HIMU и компиляция данных из работы (Rasskazov et al., 2020) с дополнениями по карбонатитам и базаниту Амба Донгара (Simonetti et al., 1995, 1998). Положение геохрон 4.0, 4.44 и 4.51 млрд лет рассчитано относительно состава Nanton, железного метеорита Каньон Дьявола, обозначающего начало события CAI (calcium-alumina inclusions) 4.5673 млрд лет назад (Blichert-Toft et al., 2010).

Sources of the Neoproterozoic carbonatites of South India were isolated from the convective mantle during the time interval from 4.26 to 0.8 Ga. The positions of the Samalpatti massif secondary isochron relative the mantle geochron at 800 Ma suggests a significantly lower 238U/204Pb (μ) value in the carbonatite source than in the primordial mantle material. The low-μ Hadean protolith contrasts sharply with the high-μ (HIMU) component common among modern Ocean Island Basalts (OIB).

In the 207Pb/204Pb – 206Pb/204Pb diagram, data points of carbonatites and associated silicate rocks from igneous complexes of the Deccan Province shift slightly when recalculated to 66 Ma, actually remain within symbols used in the diagram. For instance, for the Amba Dongar 95-AMDO-002 carbonatite (Simonetti et al., 1998), the ratios measured were: 207Pb/204Pb = 15.80 and 206Pb/204Pb = 19.159. When recalculated to 66 Ma, the initial ratios obtained were: 207Pb/204Pb = 15.799 and 206Pb/204Pb = 19.137. For the Amba Dongar basanite 95-AMDO-001, the ratios measured were: 207Pb/204Pb = 15.546 and 206Pb/204Pb = 18.145. When recalculated to 66 Ma, the initial ratios obtained were: 207Pb/204Pb = 15.541 and 206Pb/204Pb = 18.037. Pb isotopes data are presented in published papers, with rare exceptions, without U and Pb concentrations. In the diagram of Fig. 8b, age corrections are negligible, so these are plotted for the entire data set. On the 207Pb/204Pb versus 206Pb/204Pb diagram, data points of carbonatites and silicate rocks of the Deccan Province occupy mainly the elevated μ (ELMU) region with extension into the HIMU one. Rocks of individual areas form trends that are interpreted as secondary isochrones with a slope corresponding to an age of ca. 2 Ga (Figs 8b, 9).

On the one hand, some data points of the Amba Dongar carbonatites are plotted at the 4.2 Ga geochron that corresponds to the age of carbonatite sources for the Samalpatti and Sevattur massifs. However, four samples of basaltic dykes from the Amba Dongar massif (Chandra et al., 2018, 2019) with (206Pb/204Pb)i>18.87 yield a source age of 3.9 Ga. Four samples of Amba Dongar calcium carbonatites with (206Pb/204Pb)i from 19.03 to 19.17 show close age of 3.8 Ga for their source. These sources of Early Earth seem to be younger than those of carbonatites from South India.

On the other hand, lateral shift of data points yield secondary isochron age estimate of their source (ca. 1.7 Ga) younger than the one for Fe carbonatites (ca. 2.2 Ga) (Fig. 9). Both are in a range of ages that are characteristic of the source region for tholeiitic basalts of the Deccan Province. A position of carbonatite data points with elevated 207Pb/204Pb ratio relative to 2.12 Ga secondary isochron of the source for Kutch tholeiitic basalts assumes the carbonatite origin from an Early Earth source material modified due to the ca. 2 Ga event of the Middle Geodynamic Epoch in the Earth evolution.

Fig 9 Pb isot Amba Dongar2

Fig. 9. Age estimates of protoliths for Ca and Fe carbonatites in Amba Dongar sources on the diagram of 207Pb/204Pb versus 206Pb/204Pb initial ratios (at 66 Ma). Used data are from (Chandra et al., 2019). The 2.12 Ga secondary isochron of the source for tholeiitic basalts of Kutch is plotted from Fig. 8. The LOMU, ELMU, and HIMU compositions are discriminated after (Rasskazov et al., 2020).

Рис. 9. Оценки возраста протолитов в источниках Ca и Fe карбонатитов Амба Донгар на диаграмме начальных отношений 207Pb/204Pb и 206Pb/204Pb (возраст 66 млн лет). Использованы данные из работы (Chandra et al., 2019). Вторичная изохрона 2.12 млрд лет источника для толеитовых базальтов Куча приводится по рис. 8. Составы LOMU, ELMU и HIMU разделяются по работе (Rasskazov et al., 2020).

Global distribution of the HIMU component in oceanic basalts indicates the possibility of long-term preservation of its reservoir and isolation from the convective mantle in two potential regions of the Earth: 1) the shallow continental lithospheric mantle or 2) the base of the lower mantle. From Pb isotope estimates, most HIMU sources are referred to the Neoarchean and, partially, to the Meso- and Paleoarchean (Homrighausen et al., 2018) that is consistent with the initial age estimate of 3–2 Ga for the HIMU end-member (Zindler, Hart, 1986).

The global end-member such as the HIMU denotes the mantle volume involved in tectonic motions resulted in magmatism, i.e. the tectonosphere. About 800 million years ago, the Indian subcontinent was a part of Gondwana. Carbonatite magmas were generated at this time from a protolith with significantly lower μ value than similar magmas of the Deccan Province at about 66 Ma. The protolith composition of carbonatite sources beneath the Indian subcontinent could have changed due to the processes of the late Precambrian (Pan-African) orogeny, but most likely the Pb isotopic composition of source protolith changed due to separation of the Indian subcontinent from Gondwana with its subsequent collisional interaction with the southern edge of Asia. Carbonatites from the Samalpatti and Sevattur and those from Amba Dongar were derived from the Early Earth protoliths (of ca. 4.26 and 3.85 Ga, respectively). The latter yielded also ca. 1.7–2.2 Ga age estimates that assume their relation to processes responsible for origin of source material for the Deccan LIP.

No adequate age estimate is obtained for sources of carbonatites from the Neoproterozoic Tomtor massif because of their origin from multiple sources. For protoliths from sources of Cretaceous Aldan Shield lamproites, closely related to carbonatites, a secondary Pb–Pb isochron of 3.45 Ga is calculated (Fig. 10). Protoliths from sources of Cretaceous carbonatites in the Weishan massif show an age estimate of ca. 2.2 Ga. The latter yields a younger age estimate as compared to the one of the protolith (2.8 Ga) for alkaline granite porphyry dikes and other silicate rocks from this massif (Fig. 11). These protoliths designate processes related to the Middle Geodynamic Epoch of the Earth evolution. At the latest geodynamic stage (i.e., in the past 90 Ma), the tectonosphere of North Asia was affected by reorganization resulted in ascent of primordial material from the deep and shallow mantle with LOMU and ELMU signatures (Rasskazov et al., 2020).

Fig 11 Pb isot Мурун

Fig. 10. Age estimates for protoliths of lamproites of Aldan shield sources on the diagram of 207Pb/204Pb versus 206Pb/204Pb initial ratios (at 135 Ma). Data on rocks from the Murun, Upper Yakokut, and Loman massifs are used (Davies et al., 2006). All data points occupy a region of LOMU compositions after (Rasskazov et al., 2020).

Рис. 10. Оценки возраста протолитов лампроитов источников Алданского щита на диаграмме начальных отношений 207Pb/204Pb и 206Pb/204Pb (возраст 135 млн лет). Используются данные по породам массивов Мурун, Верхний Якокут, Ломан (Davies et al., 2006). Все фигуративные точки находятся в области мантийных составов LOMU (Rasskazov et al., 2020).

Fig 12 Pb isot Вэйшань

Fig. 11. Age estimates for carbonatite sources of the Weishan massif on the diagram of 207Pb/204Pb versus 206Pb/204Pb initial ratios (at 110 Ma). Pb isotope compositions of associated silicate rocks of the massif are plotted for comparisons. Data used are from (Ding et al., 2022). A Low m Viscous Protomantle Reservoir (LOMUVIPMAR) and discrimination line between the LOMU and ELMU compositions are shown after (Rasskazov et al., 2020).

Рис. 11. Оценки возраста источников карбонатитов массива Вейшань на диаграмме начальных отношений of 207Pb/204Pb и 206Pb/204Pb (возраст 110 млн лет). Для сравнения нанесены изотопные составы Pb сопутствующих силикатных пород массива. Использованы данные работы (Ding et al., 2022). Резервуар протомантии с низкой вязкостью (LOMUVIPMAR) и разделительная линия составов LOMU и ELMU показаны по работе (Rasskazov et al., 2020).

Nd and Sr isotope signatures of sources

In the diagram of temporal variations of the initial Nd isotope composition (Fig. 12a), the Samalpatti and Sevattur carbonatites and associated silicate rocks are located in the enriched region relative to the chondrite uniform reservoir (CHUR). Data points of the Amba Dongar carbonatites fall on the CHUR line, and those of associated silicate rocks extend into both the depleted and enriched regions.

A concentrated group of the Weishan carbonatites is plotted below the CHUR line and falls into the enriched region of the diagram. Silicate rocks of this igneous complex, with the exception of one sample, occupy also the enriched region of the diagram. Data points of carbonatites and associated potassic silicate rocks from the Malo-Murunsky massif are located in the enriched region and in this respect they are similar to potassic rocks of the Leucite Hills, Western USA and lamproites from Western Australia. Protoliths of a source for the Australian lamproites have significantly enriched Nd isotopic composition (εNd from –16 to –7). On the diagram 143Nd/144Nd – 87Sr/86Sr, the lamproite trend extends to a data field of mica kimberlites (group II) (DePaolo, 1988).

On the diagram of temporal variations of the initial isotope ratio (87Sr/86Sr)i (Fig. 12b), data points of the Samalpatti and Sevattur carbonatites and associated silicate rocks are located above the line of the undifferentiated mantle reservoir. Similar positions are shown by data points of the Malo-Murunsky, Weishan, and Amba Dongar carbonatites. Data points of silicate rocks of the Weishan and Amba Dongar complexes are partially elevated. Those of the Leucite Hills are located near the line of the undifferentiated reservoir, whereas data points of the West Australia lamproites are shifted due to sharp enrichment in radiogenic 87Sr (87Sr/86Sr i = 0.710–0.719).

Fig 12 Nd-time

Fig. 12. Diagram of temporal variations in initial εNd(t) (a) and (87Sr/86Sr)i (б). Symbols are as in Fig. 11. Data are from (Simonetti et al., 1995; Schleicher et al., 1998; Ray et al., 2000a; Vladykin et al., 2003; 2008; Vladykin, 2005; Mirnejad, Bell, 2006; Ackerman et al., 2017; Banerjee, Chakrabarti, 2019; Ding et al., 2022). Panel a shows the lines of Nd isotopic evolution of the chondritic universal reservoir (CHUR) (Faure, 1989) and depleted mantle in island arcs (DePaolo, Wasserburg, 1976), panel b shows the line of Sr isotopic evolution from the composition of BABI (Basaltic Achondrite Best Initial) (Faure, 2001) and a parallel line of Sr isotopic evolution with the modern ratio 87Sr/86Sr = 0.7045, corresponding to the undifferentiated mantle.

Рис. 12. Диаграмма временных вариаций начальных изотопных составов Nd (а) и Sr (б). Условные обозн. см. рис. 11. Использованы данные (Vladykin, 2005; Simonetti et al., 1995; Schleicher et al., 1998; Ray et al., 2000a; Vladykin et al., 2003; 2008; Mirnejad, Bell, 2006; Ackerman et al., 2017; Banerjee, Chakrabarti, 2019; Ding et al., 2022). На панели а показаны линии изотопной эволюции Nd хондритового однородного резервуара (CHUR) (Фор, 1989) и обедненной мантии по островным дугам (DePaolo, Wasserburg, 1976), на панели б – линия изотопной эволюции Sr от состава ВАВI (Basaltic Achondrite Best Initial) (Faure, 2001) и параллельная ей линия изотопной эволюции Sr с современным отношением 87Sr/86Sr = 0.7045, соответствующим недифференцированной мантии.

Initial Sr isotope ratio (87Sr/86Sr)i in a source of the Samalpatti carbonatites, similar to the ratio in sources of the Amba Dongar, Malo-Murunsky, and Weishan carbonatites, indicates its enrichment in Rb (or depletion in Sr). Similarly, initial εNd of the Samalpatti carbonatites is lower than the CHUR value that reflects a relative enrichment of carbonatite source region by light REE, similar to other carbonatite sources. Probably, the source rocks were affected by metasomatism resulted in elevated Rb and Nd concentrations. As a result, data points are shifted in the εNd(t) and (87Sr/86Sr)i from the undifferentiated mantle reservoir. It is noteworthy that the source of the Samalpatti carbonatites is anomalously depleted in 238U compared to 204Pb (relative to the protomantle reservoir of the solidified magma ocean of the early Earth). This phenomenon should be explained yet.

More detail comparison of sources for volcanic and subvolcanic rocks from Chhotaudepur with those for basalts in other areas of the Deccan Province is performed using the initial Nd and Sr isotope ratios recalculated to the age of 66 Ma. The initial isotope ratios of (87Sr/86Sr)i and (143Nd/144Nd)t=66 were defined in the Chhotaudepur basalts from 0.70555 to 0.70657 and from 0.51259 to 0.51264, respectively. As compared to basalts, the PRV-2 basaltic andesite has an elevated (87Sr/86Sr)i value (0.70915) and a relatively low (143Nd/144Nd) t=66 one (0.51237). In a RCD-21 picrobasalt, low (87Sr/86Sr)i (0.70446) and (143Nd/144Nd)t=66 (0.51216) were obtained, in the RPV-4 picrobasalt – elevated (87Sr/86Sr)i (0.70725) and slightly decreased (143Nd/144Nd) t=66 (0.51254). Ranges of isotope ratios in lamprophyres: (87Sr/86Sr)i = 0.70625–0.70732 and (143Nd/144Nd)t=66 = 0.51227–0.51231; in foidite: (87Sr/86Sr)i = 0.70640, (143Nd/144Nd)t=66 = 0.51237; in phonolite: (87Sr/86Sr)i = 0.70737, (143Nd/144Nd)t=66 = 0.51237 fall within the ranges of isotope ratios of lamprophyres and or slightly elevated.

The Pavagadh picrobasalts have relatively depleted Sr and Nd isotopic signatures ((87Sr/86Sr)i = 0.7044–0.7045, (143Nd/144Nd)t=66 = 0.51270–0.51276). In contrast, the RCD-21 Chhotaudepur picrobasalt has an initial Sr isotopic value that fall within the range of those in high-Ti Pavagadh and Kutch picrobasalts in combination with similar initial Nd isotopic value, while the PRV-2 picrobasalt has a relatively enriched initial Sr and Nd isotopic composition.

Barium and strontium

Trends of Ba and Sr enrichment of carbonatites are clearly visible on diagram with linear scales (Fig. 13a). On the one hand, the Samalpatti benstonite carbonatites show a trend of Ba enrichment. The Ba concentration reaches 230 ppm. Increasing in barium concentration is not accompanied by increasing in strontium. On the other hand, a trend of increasing Sr is distinguished in the Weishan carbonatites. The Sr concentration reaches 135 ppm. In addition to the Weishan carbonatites, the high-Sr trend includes the Tomtor carbonatites. At its beginning, there are data points of some samples from the Sevattur and Malo-Murunsky massifs. The third trend is formed by Ba–Sr carbonatites of the final phase of the Malo-Murunsky massif. The Ba concentration reaches 300 ppm. Increasing in Ba is accompanied by increasing in Sr (to 90 ppm).

On the Ba–Sr diagram with logarithmic scales (Fig. 13b), carbonatites of India are subdivided into groups with low and high concentrations of these elements. Among the Neoproterozoic (ca. 800 Ma) rocks of South India, carbonatites of the Samalpatti massif are of key importance. Among them, three groups are distinguished: 1) a group with low Sr and Ba abundances (Sr = 100–1000 ppm, Ba = 100–1000 ppm, Ba/Sr = 0.5–4.0), 2) a low-Ba group with an elevated Sr content (Sr = 5000–15000 ppm, Ba = 100–1000 ppm, Ba/Sr < 0.5), and 3) a high-Ba group (Ba = 20000–230000 ppm, Ba/Sr > 4.0). The Samalpatti benstonite carbonatites belong to the third group, in which an increase in Ba from 20 to 230 ppm is accompanied by a decrease in Sr from 10 to 0.7 ppm. A similar subdivision into three groups is observed in carbonatites of the Sevattur massif, which is dominated by rocks with Sr and Ba contents comparable to those in the first and second groups of the Samalpatti carbonatites. A single sample of the Sevattur carbonatite is similar to the third group of the Samalpatti carbonatites. Data points of the Sevattur carbonatites are shifted to the inner part of the triangle (groups 1, 2, and 3) of the Samalpatti carbonatites. The carbonatites of the Joggipatti have Ba and Sr similar only to group 2 of the Samalpatti carbonatites.

Fig 8 Ba-Sr линейн

Fig. 13. Ba – Sr diagrams for rocks of alkaline-carbonatite complexes from South India (Samalpatti and Sevattur massifs), China (Weishan massif), and Siberia (Malo-Murunsky and Tomtor massifs) in linear scales (a) and in logarithmic ones (b, c). Using linear scales, trends of enrichment of carbonatites in barium and strontium are distinguished. Data are from (Vladykin, 2005; Gwalani et al., 1993; Srivastava, 1997; Vladykin et al., 2008; Banerjee, Chakrabarti, 2019; Wang et al., 2019; Dhote et al., 2021; Vladykin, Pirajno, 2021; Ding et al., 2022).

Рис. 13. Диаграммы Ba – Sr пород щелочно-карбонатитовых комплексов Южной Индии (массивы Самалпатти и Севаттур), Китая (массив Вэйшань) и Сибири (Мурунский и Томторский массивы) в линейных шкалах (а) и в логарифмических (б, в). Данные из работ (Vladykin, 2005; Gwalani et al., 1993; Srivastava, 1997; Vladykin et al., 2008; Banerjee, Chakrabarti, 2019; Wang et al., 2019; Dhote et al., 2021; Vladykin, Pirajno, 2021; Ding et al., 2022).

Cretaceous-Paleogene (~66 Ma) carbonatites of the Amba Dongar massif form a single cloud of data points scattered mainly between groups 2 and 3 of the Samalpatti carbonatites. Some of the samples of the Amba Dongar carbonatites are isolated within the field of group 1 of Samalpatti. Thus, the Cretaceous-Paleogene carbonatites of Amba Dongar generally inherit the Ba–Sr specificity of the Neoproterozoic carbonatites. Data point clouds of silicate alkaline rocks of the Neoproterozoic massifs of South India and the Cretaceous-Paleogene massif of Amba Dongar are shifted from those of carbonatites with a relative decrease in Ba and Sr.

On the Ba–Sr diagram with logarithmic scales, data points of carbonatites from the Siberian and North China cratons are generally shifted relative to those of Indian carbonatites with enrichment in strontium (Fig. 13c). Data points of carbonatites from the Malo-Murunsky massif are distributed along the line of Ba/Sr = 4. Those of carbonatites from other massifs (partially data points of the Malo-Murunsky carbonatites) are distributed along the line of Ba/Sr = 0.5 and below it. Data points of the Weishan carbonatites mainly belong to the latter trend, but several data points fall at the beginning of the Ba–Sr trend for the Malo-Murunsky carbonatites. The clouds of data points of alkaline silicate rocks are sharply shifted towards the area of the diagram with a lower strontium concentration.

The diagrams in Fig. 13 indicate different patterns of Ba and Sr concentration in the Indian and North Asian carbonatites. In the early massifs of India (Samalpatti, Sevattur, Joggipatti) three components are distinguished. In the late massif (Amba Dongar), they give intermediate compositions perceived as a result of mixing. In the distribution of Ba and Sr, inheritance of components is clearly revealed. In Asia, the Malo-Murunsky massif, on the one hand, and the Tomtor and Weishan massifs, on the other hand, form enrichment trends in Ba and Sr (Malo-Murunsky) and Sr (Tomtor and Weishan), respectively. Such a difference in trends serves as an addition argument to the general age difference of carbonatites and their sources in these regions: the limitation of carbonatite magmatism in North Asia to the Early Cretaceous and its continuation on the Indian subcontinent throughout the Cenozoic (Figs 6, 7).

Conclusion

The character of carbonatite sources in the Indian subcontinent was considered in the Samalpatti and Amba Dongar alkaline massifs in comparison with similar massifs occurred in North Asia. It was inferred that carbonatites of India have similar ages to those of Africa and differ from carbonatites of North Asia, where they are absent at the latest geodynamic stage, i.e. in the past 90 Ma. Another regional difference of carbonatites is exhibited in distribution of Ba and Sr. In the early massifs of India (Samalpatti, Sevattur, Joggipatti), there are three components that give intermediate compositions in the late massif (Amba Dongar), perceived as a result of mixing. The inherited nature of the components of carbonatites of different ages in India is clearly displayed in the distribution of Ba and Sr in carbonatites. In North Asia, carbonatites form independent trends of Ba and Sr (Murun) and Sr (Tomtor and Weishan) enrichments.

It is assumed that in the evolution of the tectonosphere of the Indian subcontinent, there was a time, when it was part of Gondwana and was combined with the subcontinents of Africa, Australia, and Antarctica. During the tectonosphere activities of the Indian subcontinent about 800 million years ago, carbonatite melts from the protomantle reservoir of 4.26 Ga (in the Early Mantle Geodynamic Epoch) were generated that sharply differed from the reservoir of the primordial mantle of the solidified magma ocean by low μ. Further studies are required to clarify the origin of Pb isotope signatures in this source.

After the Indian subcontinent separation from Gondwana in the time interval of 130–100 Ma and its merge with Asia about 66 Ma, the source of the low µ Samalpatti carbonatite reservoir was no longer dominated in the tectonosphere of the Indian subcontinent. It was replaced by a source of ELMU carbonatites and silicate rocks. The source of the Amba Dongar carbonatites had the protolith of the Early Earth mantle partly modified in the Middle Geodynamic Epoch of the Earth evolution (ca. 2 Ga), when the protoliths for silicate melts of the Deccan LIP were generated.

A large set of variables in evolution of deep continental magmatism resulted in a practice of separate consideration of the component composition of rocks of each area with creation of specific models for the evolution of mantle and crustal processes. Alkaline-ultramafic complexes with carbonatites show general difference in their deep sources in cratonic and folded areas of continents in terms of Nd and Sr isotopes. In geological past of continental areas, these isotopic signatures require clarification in terms of Pb isotope ages of deep photoliths involved in melting. For sources of carbonatites considered, the Sm–Nd and Rb–Sr isotope systems show enriched signatures.

Acknowledgments

The research was done under the basic research projects of the Institute of the Earth Crust SB RAS (FWEF-2021-0009) “Modern geodynamics, mechanisms of the lithosphere destruction and hazardous geological processes in Central Asia” and the Faculty of Geology of ISU "Study of mantle-crust interaction processes and formation of mineral deposits". Analytical studies of the rocks were performed using an Agilent 7500ce quadrupole mass spectrometer of the Ultramicroanalysis Collective Use Center was used for trace element analysis (analyst A.P. Chebykin, sample preparation by M.E. Markova) and a Finnigan MAT 262 mass spectrometer of the Irkutsk Scientific Center of the Russian Academy of Sciences (analyst N.N. Fefelov, sample preparation by E.V. Saranina). Major oxides of rocks were determined by wet chemical analysis at the Institute of the Earth’s Crust SB RAS (analysts G.V. Bondareva and M.M. Samoylenko). We thank prof. K.R. Hari for donated samples from the Chhotaudepur series, compilation of a map with their locations, and discussion of the geology.

Referencies

Ackerman L., Magna T., Rapprich V., Upadhyay D., Krátký O., Čejková B., Erban V., Kochergina Y.V., Hrstka T. Contrasting petrogenesis of spatially related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India // Lithos. 2017. Vol. 284–285. P. 257–275. https://dx.doi.org/10.1016/j.lithos.2017.03.029

Aranha M., Porwal A., Gonzalez-Alvarez I. Indian carbonatites in the global tectonic context // Ore and Energy Resource Geology. 2023. Vol. 15. 100023. https://dx.doi.org/10.1016/j.oreoa.2023.100023

Banerjee A., Chakrabarti R. A geochemical and Nd, Sr and stable Ca isotopic study of carbonatites and associated silicate rocks from the ~65 Ma old Ambadongar carbonatite complex and the Phenai Mata igneous complex, Gujarat, India: Implications for crustal contamination, carbonate recycling, hydrothermal alteration and source-mantle mineralogy // Lithos. 2019. Vol. 326–327. P. 572–585. https://dx.doi.org/10.1016/j.lithos.2019.01.007

Basu A.R., Renne P.R., Dasgupta D.K., Teichmann F., Poreda R.J. Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts // Science. 1993. Vol. 261. P. 902–906.

Beck R.A., Burbank D.W., Sercombe W.J., Riley G.W., Barndt J.K., Berry J.R., Afzal J., Khan A.M., Jurgen H., Metje J., Cheema A., Shafique N.A., Lawrence R.D., Khan M.A. Stratigraphic evidence for an early collision between northwest India and Asia // Nature. 1995. Vol. 373. P. 55–58.

Blichert-Toft J., Zanda B., Ebel D.S., Albarède F. The Solar System primordial lead // Earth and Planetary Science Letters. 2010. Vol. 300. P. 152–163. https://dx.doi.org/10.1016/j.epsl.2010.10.001

Carlson R.W., Hart W.K. Flood basalt volcanism in northwestern United States / MacDougall J.D. (ed.). Continental flood basalts. Kluwer, 1988. P. 35–62.

Chalapathi Rao N.V., Dharma Rao C.V., Das S. Petrogenesis of lamprophyres from Chhota Udepur area, Narmada rift zone, and its relation to Deccan magmatism // Journal of Asian Earth Sciences. 2012. Vol. 45. P. 24–39. https://doi.org/10.1016/j.jseaes.2011.09.009

Chalapathi Rao N.V., Lehmann B. Kimberlites, flood basalts and mantle plumes: New insights from the Deccan Large Igneous Province // Earth-Science Reviews. 2011. Vol. 107. P. 315–324. https://doi.org/10.1016/j.earscirev.2011.04.003

Chandra J., Paul D., Stracke A., Chabaux F., Granet M. The origin of carbonatites from Amba Dongar within the Deccan Large Igneous Province // Journal of Petrology. 2019. Vol. 60, No. 6. P. 1119–1134. doi: 10.1093/petrology/egz026

Chandra J., Paul D., Stracke A., Viladkar S.G., Sensarma S. Origin of the Amba Dongar carbonatite complex, India and its possible linkage with the Deccan Large Igneous Province // Geological Society, London, Special Publications, 2018. Vol. 463. P. 137–169.

Chandrasekharam D., Mahoney J.J., Sheth H.C., Duncan R.A. Elemental and Nd-Sr-Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India // Journal of Volcanology and Geothermal Research. 1999. Vol. 93. P. 111–123.

Davies G.R., Stolz A.J., Mahotkin I.L., Nowell G.M., Pearson D.G. Trace Element and Sr–Pb–Nd–Hf Isotope Evidence for Ancient, Fluid-Dominated Enrichment of the Source of Aldan Shield Lamproites // Journal of Petrology. 2006. Vol. 47. No. 6. P. 1119–1146. doi:10.1093/petrology/egl005

Dawson J. Kimberlites and xenoliths in them. M.: Mir, 1983. 306 p. (Translated from English to Russian).

DePaolo D.J. Neodymium isotopes in geology. Springer-Verlag, 1988. 187 p.

DePaolo D.J., Wasserburg G.J. Nd isotopic variations and petrogenetic models // Geophysical Research Letters. 1976. Vol. 3. P. 249–252.

Dhote P., Bhan U., Verma D. Genetic model of carbonatite hosted rare earth elements mineralization from Ambadongar Carbonatite Complex, Deccan Volcanic Province, India // Ore Geology Reviews. 2021. Vol. 135. P. 104215. https://dx.doi.org/10.1016/j.oregeorev.2021.104215

Dickin A.P. Radiogenic isotope geology. Third edition. Cambridge: University Press, 2018. 492 p.

Ding Ch., Zhao B., Dai P., Li D., Zhang Zh., Sun R., Wei P., Liu Q., Li D. Geochronology, geochemistry and Sr–Nd–Pb–Hf isotopes of the alkaline–carbonatite complex in the Weishan REE deposit, Luxi Block: Constraints on the genesis and tectonic setting of the REE mineralization // Ore Geology Reviews. 2022. Vol. 147. P. 104996. https://dx.doi.org/10.1016/j.oregeorev.2022.104996

Dupuy C., Liotaed J.M., Dostal J. Zr/Hf fractionation in interplate basaltic rocks: Carbonate metasomatism in the mantle source // Geochim. Cosmochim. Acta. 1992. Vol. 56. P. 2417–2423. https://doi.org/10.1016/0016-7037(92)90198-R

Faure G. Fundamentals of isotope geology. M.: Mir (translated from English to Russian), 1989. 590 p. [Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с.]

Faure G. Origin of igneous rocks. The isotopic evidence. Springer, 2001. 496 p.

Foulger G.R. Plates vs. plumes: a geological controversy. Wiley-Blackwell, 2010. 328 p.

Gwalani L.G., Fernandez S., Karanth R.V., Demeny A., Chang W.-J., Avasia R.K. Alkaline and Tholeiitic Dyke Swarm associated with Amba Dongar and Phenai Mata complexes, Chhota Udaipur alkaline sub-province, Western India // Memoirs e Geological Society of India. 1994. Vol. 33. P. 391−424.

Gwalani L.G., Rock N.M.S., Chang W.-J., Fernandez S., Allegre C.J., Prinzhofer A. Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan igneous province, Gujarat, India: 1. Geology, Petrography and petrochemistry // Mineralogy and Petrology. 1993. Vol. 47. P. 219–253.

Hari K.R., Chalapathi Rao N.V., Swarnkar V. Petrogenesis of gabbro and orthopyroxene gabbro from the Phenai Mata igneous complex, Deccan volcanic province: Products of concurrent assimilation and fractional crystallization // Journal Geological Society of India. 2011. Vol. 78. P. 501509. https://dx.doi.org/10.1007/s12594-011-0126-0

Hari K.R., Chalapathi Rao N.V., Swarnkar V., Hou G. Alkali feldspar syenites with shoshonitic affinities from Chhotaudepur area: Implication for mantle metasomatism in the Deccan large igneous province // Geoscience Frontiers. 2014. Vol. 5 (2). P. 261–276. https://dx.doi.org/10.1016/j.gsf.2013.06.007

Hari K.R., Swarnkar V. Petrogenesis of basaltic and doleritic dykes from Kawant, Chhotaudepur province, Deccan traps / Dyke swarms: Keys for geodynamic interpretation (ed. R.K. Srivastava). Berlin, Heidelberg: Springer-Verlag, 2011. P. 283–299.

Hauri E.H., Whitehead J.A., Hart S.R. Fluid dynamic and geochemical aspects of entrainment in mantle plumes // Journal of Geophysical Research. 1994. Vol. 99. P. 24275–24300.

Hofmann C., Féraud G., Courtillot V. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps // Earth and Planetary Science Letters. 2000. Vol. 180 (1–2). P. 13–27.

Homrighausen S., Hoernle K., Hauff F., Geldmacher J., Wartho J.-A., Van Den Bogaard P., Garbe-Schönberg D. Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics // Earth-Science Reviews. 2018. Vol. 182. P. 85–101. https://dx.doi.org/10.1016/j.earscirev.2018.04.009.

Khan S.D., Stern R.J., Manton M.I. et al. Age, geochemical and Sr–Nd–Pb isotopic constraints for mantle source characteristics and petrogenesis of Teru volcanics, Northern Kohistan terrane, Pakistan // Tectonophysics. 2004. Vol. 393. P. 263–280. https://doi.org/10.1016/j.tecto.2004.07.038

Knight K.B., Renne P.R., Halkett A., White N. 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps // Earth and Planetary Science Letters. 2003. Vol. 208 (1-2). P. 85–99. https://dx.doi.org/10.1016/S0012-821X(02)01154-8

Konev A.A., Vorobyov E.I., Lazebnik K.A. Mineralogy of the Murun alkaline massif. Novosibirsk: Publishing house SB RAS NIC OIGGM, 1996. 222 p. [Конев А.А., Воробьев Е.И., Лазебник К.А. Минералогия Мурунского щелочного массива. Новосибирск: Изд-во НИЦ ОИГГМ СО РАН, 1996. 222 с.]

Krishnamurthy P. Carbonatites of India // Journal Geological Society of India. 2019. Vol. 94. P. 117–138. https://dx.doi.org/10.1007/s12594-019-1281-y

Kumar A., Gopalan K. Precise Rb-Sr age and enriched mantle source of the Sevattur carbonatites, Tamil Nadu, South India // Current Science. 1991. Vol. 60 (11). P. 653–655.

Kumar S. Geochemical specialization of Phenai Mata Igneous Complex, Baroda district, Gujarat // Journal of Scientific Research. 1996. Vol. 46. P. 207−218.

Lehman B., Burgess R., Frei D., Belyatsky B., Mainkar D., Chalapathi Rao N.V., Heaman L.M. Diamondiferous kimberlites in central India synchronous with Deccan flood basalts // Earth and Planetary Science Letters. 2010. Vol. 290. P. 142–149. https://dx.doi.org/10.1016/j.epsl.2009.12.014

Lightfoot P., Hawkesworth C., Sethna S.F. Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd and Pb isotope and trace element evidence // Contribution to Mineralogy and Petrology. 1987. Vol. 95. P. 44–54.

MacDonald G.A., Katzura T. Chemical composition of Hawaiian lavas // Journal of Petrology. 1964. Vol. 5 (1). P. 82–133.

Mahapatro S.N., Meshram T., Korakappa M. Mineralogy of Pakkanadu carbonatites and associated rocks, South India: constraints on evolution and evidences for REE enrichment // Mineralogy and Petrology. 2023. Vol. 117. P. 595–617. https://doi.org/10.1007/s00710-023-00843-0

Mahoney J.J., Duncan R.A., Khan W., Gnos E., McCormick G.R. Cretaceous volcanic rocks of the South Tetyan suture zone, Pakistan: implications for the Reunion hotspot and Deccan Traps // Earth and Planetary Science Letters. 2002. Vol. 203. P. 295–310.

Mahoney J., Macdougall J.D., Lugmair G.W., Gopalan K., Krishmamurthy P. Origin of contemporaneous tholeiitic and K-rich alkalic lavas: a case study from the northern Deccan Plateau, India // Earth and Planetary Science Letters. 1985. Vol. 72 (1). P. 39–53.

Mainkar D., Lehmann B. The diamondiferous Behradih kimberlite pipe, Mainpur Kimberlite Field, Chhattisgarh, India: reconnaissance petrography and geochemistry // Journal of Geological Society of India. 2007. Vol. 69. P. 547–552.

Makhotkin I.L., Arakelyants M.M., Vladykin N.V. Age of lamproites of the Aldan province. Transactions (Doklady) of the USSR Academy of Sciences // Earth Science Sections. 1989. Vol. 306 (3). P. 703–707 [Махоткин И.Л., Аракелянц М.М., Владыкин Н.В. О воз­расте лампроитов Алданской провинции // Доклады АН СССР. 1989. Т. 306. № 3. С. 703–707].

McDonough W.F., Sun S.-S. The composition of the Earth // Chemical Geology. 1995. Vol. 120. P. 223–253.

McLoughlin S. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism // Australian Journal of Botany. 2001. Vol. 49 (3). P. 271–300. https://doi.org/10.1071/BT00023

Melluso L., Mahoney J.J., Dallai L. Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India) // Lithos. 2006. Vol. 89. P. 259–274. https://doi.org/10.1016/j.lithos.2005.12.007

Melluso L., Sethna S.F., D’Antonio M., Javeri P., Bennio L. Geochemistry and petrogenesis of sodic and potassic mafic alkaline rocks in the Deccan Volcanic Province, Mumbai Area (India) // Mineralogy and Petrology. 2002. Vol. 74. P. 323–342.

Mirnejad H., Bell K. Origin and source evolution of the Leucite Hills lamproites: Evidence from Sr–Nd–Pb–O isotopic compositions // Journal of Petrology. 2006. Vol. 47 (12). P. 2463–2489. https://doi.org/10.1093/petrology/egl051

Mitchell R.H., Smith C.B., Vladykin N.V. Isotopic composition of strontium and neodymium in potassic rocks of the Little Murun complex, Aldan Shield, Siberia // Lithos. 1994. Vol. 32 (3–4). P. 243–248. https://doi.org/10.1016/0024-4937(94)90042-6

Moralev V.M., Voronovski S.N., Borodin L.S. New findings about the age of carbonatites and syenites from southern India // USSR Academy of Sciences. 1975. Vol. 222. P. 46–48.

Pandey R., Pandey A., Chalapathi Rao N.V., Belyatsky B., Choudhary A.K., Lehmann B., Pandit D., Dhote P. Petrogenesis of end-Cretaceous/Early Eocene lamprophyres from the Deccan Large Igneous Province: Constraints on plume-lithosphere interaction and the post-Deccan lithosphere-asthenosphere boundary (LAB) beneath NW India // Lithos. 2019. Vol. 346–347. P. 105139. https://doi.org/10.1016/j.lithos.2019.07.006

Pandit M.K., Sial A.N., Sukumaran G.B., Pimentel M.M., Ramasamy A.K., Ferreira V.P. Depleted and enriched mantle sources for Paleo- and Neoproterozoic carbonatites of southern India: Sr, Nd, C–O isotopic and geochemical constraints // Chemical Geology. 2002. Vol. 189. P. 69–89.

Panina L.I., Rokosova E.Y., Isakova A.T., Tolstov A.V. Lamprophyres of the Tomtor massif: A result of mixing between potassic and sodic alkaline mafic magmas // Petrology. 2016. Vol. 24 (6). P. 608625. doi: 10.1134/S0869591116060047

Panina L.I., Vladykin N.V. Lamproites of the Murun massif and their genesis // Geology and Geophysics. 1994. Vol. 35 (12). P. 100–113 [Панина Л.И., Владыкин Н.В. Лампроиты Мурунского массива и их генезис // Геология и геофизика. 1994. Т. 35. № 12. С. 100–113]

Paul D.K., Ray A., Das B., Patil S.K., Biswas S.K. Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan volcanic Province, Kutch, Northwest India // Lithos. 2008. Vol. 102. P. 237–259. https://doi.org/10.1016/j.lithos.2007.08.005

Peng Z.X., Mahoney J.J., Vanderkluysen L., Hooper P.R. Sr, Nd and Pb isotopic and chemical compositions of central Deccan Traps lavas and relation to southwestern Deccan stratigraphy // Journal of Asian Earth Sciences. 2014. Vol. 84. P. 63–94. https://doi.org/10.1016/j.jseaes.2013.10.025

Pokrovsky B.G., Belyakov A.Y., Kravchenko S.M., Gryaznova Yu.A. Isotope Data on the Origin of Carbonatites and Mineraized Strata in the Tomtor Intrusion, NW Yakutia // Geochemistry. 1990. Vol. 9. P. 1320–1329 [Покровский Б.Г., Беляков А.Ю., Кравченко С.М., Грязнова Ю.А. Изотопные данные о происхождении карбонатитов и рудоносных толщ Томторского интрузива (Северо-Западная Якутия) // Геохимия. 1990. Том. 9. С. 1320–1329]

Ponomarchuk V.A., Lazareva E.V., Zhmodik S.M., Travin A.V., Tolstov A.V. Relation between δ13С, δ18О and REE Content in Carbonatites of the Tomtor Complex, Sakha Republic (Yakutia) // Geodynamics & Tectonophysics. 2024. Vol. 15 (5). P. 0785. doi:10.5800/GT-2024-15-5-0785

Rampilova M., Doroshkevich A., Viladkar S., Zubakova E. Mineralogy of dolomite carbonatites of Sevattur complex, Tamil Nadu, India // Minerals. 2021. Vol. 11. P. 355. https://doi.org/10.3390/min11040355

Randive K., Meshram T. An overview of the carbonatites from the Indian subcontinent // Open Geoscience. 2020. Vol. 12. P. 85–116. https://doi.org/10.1515/geo-2020-0007

Rasskazov S.V. Cenozoic magmatism of extension zones and hot spots of East Africa and Central Asia / Alkaline magmatism and problems of mantle sources / Ed. N.V. Vladykin. Irkutsk: ISTU Publishing House, 2001. P. 78–95 [Рассказов С.В. Кайнозойский магматизм зон растяжения и горячих пятен Восточной Африки и Центральной Азии / Щелочной магматизм и проблемы мантийных источников: Труды I международного семинара / Ред. Н.В. Владыкин. Иркутск: Изд-во ИрГТУ, 2001. С. 78–95]

Rasskazov S.V., Chuvashova I.S. Global and regional expressions of the latest geodynamic stage // Bulletin of Mosk. soc. of naturalists. Geol. 2013. Vol. 88 (4). P. 21–35 [Рассказов С.В., Чувашова И.С. Глобальное и региональное выражение новейшего геодинамического этапа // Бюллетень МОИП. Отдел геологический. 2013. Т. 88. № 4. С. 21–35]

Rasskazov S., Chuvashova I., Yasnygina T., Saranina E. Mantle evolution of Asia inferred from Pb isotopic signatures of sources for Late Phanerozoic volcanic rocks // Minerals. 2020. Vol. 10 (9). P. 739. https://doi.org/10.3390/min10090739

Rasskazov S.V., Chuvashova I.S., Yasnigina T.A., Fefelov N.N., Saranina E.V. Potassic and potassic-sodic volcanic seires in the Cenozoic of Asia. Novosibirsk: Academic Publishing House “GEO”, 2012. 351 p. [Рассказов С.В., Чувашова И.С., Ясныгина Т.А., Фефелов Н.Н., Саранина Е.В. Калиевая и калинатровая вулканические серии в кайнозое Азии. Новосибирск: Гео, 2012. 351 c.]

Rasskazov S.V., Yasnygina T.A., Hari K.R., Chuvashova I.S., Saranina E.V. Magmatic sources of the evolving continental tectonosphere in India: Generation of alkaline igneous complexes with carbonatites in the Samalpatti (Southern India) and Amba Dongar (Western India) massifs // Geodynamics & Tectonophysics. 2024. Vol. 15, No. 5, 0783. doi:10.5800/GT-2024-15-5-0783

Ray J.S., Ramesh R., Pande K., Trivedi J.R., Shukla P.N., Patel P.P. Isotope and rare earth element chemistry of carbonatite alkaline complexes of Deccan volcanic province: implications to magmatic and alteration processes // Journal of Asian Earth Sciences. 2000a. Vol. 18. P. 177–194.

Ray J.S., Shukla P.N. Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility // Journal of Earth System Science. 2004. Vol. 113. P. 519–531. https://doi.org/10.1007/BF02704020

Ray J.S., Trivedi J.R., Dayal A.M. Strontium isotope systematics of Amba Dongar and Sung Valley carbonatite-alkanine complexes, India: evidence for liquid immiscibility, crustal contamination and long-lived Rb/Sr enriched mantle sources // Journal of Asian Earth Sciences. 2000b. Vol. 18. P. 585–594. https://doi.org/10.1016/S1367-9120(99)00072-3.

Ray J.S., Pande K., Pattanayak S.K. Evolution of Amba Dongar carbonatite complex: Constraints from 40Ar-39Ar chronologies of the Inner Basalt and an alkaline plug // International Geological Review 2003. Vol. 45. P. 857–862. https://doi.org/10.2747/0020-6814.45.9.857

Sarkar S., Giuliani A., Dalton H., Phillips D., Ghosh S., Misev S., Maas R. Derivation of lamproites and kimberlites from a common evolving source in the convective mantle: the case for Southern African ‘transitional kimberlites’ // Journal of Petrology. 2023. Vol. 64. P. 1–16 https://doi.org/10.1093/petrology/egad043

Schleicher H., Kramm U., Pernicka E., Schidlowski M., Schmidt F., Subramanian V., Todt W., Viladkar S.G. Enriched subcontinental upper mantle beneath Southern India: Evidence from Pb, Nd, Sr, and C–O isotopic studies on Tamil Nadu carbonatites // Journal of Petrology. 1998. Vol. 39 (10). P. 1765–1785. https://doi.org/10.1093/petroj/39.10.1765

Schleicher H., Todt W., Viladkar S.G., Schmidt F. Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: evidence for multi-stage histories // Chemical Geology 1997. Vol. 140. P. 261−273.

Semenov E., Gopal V., Subramanian V. A note on the occurrence of benstonite // Current Science. 1971. Vol. 40 (10). P. 62–64.

Sen G., Bizimis M., Das R., Paul D.K., Ray A., Biswas S. Deccan plume, lithosphere rifting, and volcanism in Kutch, India // Earth and Planetary Science Letters. 2009. Vol. 277. P. 101–111. https://doi.org/10.1016/j.epsl.2008.10.002

Sheth H.C. Were the Deccan flood basalts derived in part from ancient oceanic crust within the Indian continental lithosphere? // Gondwana Research. 2005. Vol. 8 (2). P. 109–127. https://doi.org/10.1016/S1342-937X(05)71112-6

Sheth H.C., Chandrasekharam D. Plume-rift interaction in the Deccan volcanic province // Physics of the Earth and Planetary Interiors. 1997. Vol. 99. P. 179–187. https://doi.org/10.1016/S0031-9201(96)03220-7

Sheth H.C., Melluso L. The Mount Pavagadh volcanic suite, Deccan Traps: Geochemical stratigraphy and magmatic evolution // Journal of Asian Earth Sciences. 2008. Vol. 32. P. 5–21. https://doi.org/10.1016/j.jseaes.2007.10.001

Sheth H.C., Pande K., Bhutani R..40Ar–39Ar ages of Bombay trachytes: evidence for a Paleocene phase of Deccan volcanism // Geophysical Research Letters. 2001a. Vol. 28 (18). P. 3513–3516.

Sheth H.C., Pande K., Bhutani R. 40Ar–39Ar age of a national geological monument: the Gilbert Hill basalt, Deccan Traps, Bombay // Current Science. 2001b. Vol. 80. P. 1437–1440.

Simonetti A., Bell K., Viladkar S.G. Isotopic data from the Amba Dongar Carbonatite Complex, west-central India: Evidence for an enriched mantle source // Chemical Geology (Isotope Geoscience Section). 1995. Vol. 122. P. 185–198.

Simonetti A., Goldstein S.L., Schmidberger S.S., Viladkar S.G. Geochemical and Nd, Pb, and Sr isotope data from Deccan Alkaline Complexes – Inferences for mantle sources and plume–lithosphere interaction // Journal of Petrology. 1998. Vol. 39 (11–12). P. 1847–1964. https://doi.org/10.1093/petrology/39.11.1847

Srivastava R.K. Petrology, geochemistry and genesis of rift-related carbonatites of Ambadungar, India // Mineralogy and Petrology. 1997. Vol. 61. P. 47–66. https://doi.org/10.1007/BF01172477

Srivastava R.K. Petrology of the Proterozoic alkaline carbonatite complex of Samalpatti, district Dharmapuri, Tamil Nadu // Journal of Geological Society of India. 1998. Vol. 51. P. 233−244.

Srivastava R.K., Mohan A., Fereira Filho C.F. Hot-fluid driven metasomatism of Samalpatti carbonatites, South India: Evidence from petrology, mineral chemistry, trace elements and stable isotope compositions // Gondwana Research. 2005. Vol. 8 (1). P. 77−85. https://doi.org/10.1016/S1342-937X(05)70264-1

Vijayan A., Sheth H., Sharma K.K. Tectonic significance of dykes in the Sarnu-Dandali alkaline complex, Rajasthan, northwestern Deccan Traps // Geoscience Frontiers. 2016. Vol. 7. P. 793–792. http://dx.doi.org/10.1016/j.gsf.2015.09.004

Viladkar S.G. Alkaline rocks associated with the carbonatites of Amba Dongar, Chota Udaipur, Gudjarat, India // The Indian Mineralogist. 1994. P. 130–135.

Viladkar S.G., Gittins J. Trace Elements and REE Geochemistry of Siriwasan Carbonatite, Chhota Udaipur, Gujarat // Journal of the Geological Society of India. 2016. Vol. 87 (6). P. 709–715. http://dx.doi.org/10.1007/s12594-016-0443-4

Vladykin N.V. The first occurrence of lapmpoites in the USSR // Doklady akademii nauk. 1985. Vol. 280 (3). P. 718–722 [Владыкин Н.В. Первая находка лампроитов в СССР // Доклады АН СССР. 1985. Т. 280. № 3. С. 718–722]

Vladykin N.V. Geochemistry of Sr and Nd isotopes of alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic consequences / Problems of sources of deep magmatism and plumes. Ed. N.V. Vladykin. Irkutsk, 2005. Vol. 2. P. 13–30 [Владыкин Н.В., 2005. Геохимия изотопов Sr и Nd щелочных и карбонатитовых комплексов Cибири и Монголии и некоторые геодинами­ческие следствия / Проблемы источников глубинного магматизма и плюмы. Ред. Н.В. Владыкин. Иркутск, 2005. Вып. 2. С. 13–30]

Vladykin N.V. Potassium alkaline lamproite-carbonatite complexes: petrology, genesis, and ore reserves // Russian Geology and Geophysics. 2009. Vol. 50 (12). P. 1119–1128. http://dx.doi.org/10.1016/j.rgg.2009.11.010

Vladykin N.V. Answer to the criticism of Prof. R. Mitchell article “Types of carbonatites: Geochemistry, genesis and mantle sources” // Lithos. 2021. Vol. 386–387 (404–405). P. 106383. https://doi.org/10.1016/j.lithos.2021.106383

Vladykin N.V., Kotov A.B., Borisenko A.S., Yarmolyuk V.V., Pokhilenko N.P., Sal'Nikova E.B., Travin A.V., Yakovleva S.Z. Age boundaries of formation of the Tomtor alkaline-ultramafic pluton: U-PB and 40Ar/39Ar geochronological studies // Doklady Earth Sciences. 2014. Vol. 454 (1). P. 7–11. https://doi.org/10.1134/S1028334X14010140

Vladykin N.V., Pirajno F. Types of carbonatites: Geochemistry, genesis and mantle sources // Lithos. 2021. Vol. 386–387. P. 105982. http://dx.doi.org/10.1016/j.lithos.2021.105982

Vladykin N.V., Tsaruk I.I. Geology, chemistry and genesis of Ba–Sr-bearing (“benstonite”) carbonatites of the Murun massif // Russian Geology and Geophysics. 2003. Vol. 44 (4). P. 315–330.

Vladykin N.V., Viladkar S.G., Miyazaki T., Mohan R.V. Сhemical composition of carbonatites of Tamil Nadu massif (South India) and problem of “benstoonite” carbonatites / Plumes and problems of deep sources of alkaline magmatism. Khabarovsk, 2003. P. 130–154.

Vladykin N.V., Viladkar S.G., Miyazaki T., Mohan R.V. Geochemistry of benstonite and associated carbonatites of Sevattur, Jogipatti and Samalpatti, Tamil Nadu, South India and Murun Massif, Siberia // Journal of Geological Society of India. 2008. Vol. 72 (3). P. 334–353.

Vollmer R., Ogden P., Schilling J.G., Kingsley R.H., Waggoner D.G. Nd and Sr isotopes in ultrapotassic volcanic rocks from the Leucite Hills, Wyoming // Contributions to Mineralogy and Petrology. 1984. Vol. 87. P. 359–368.

Vorobyov E.I. Strontium-barium carbonatites of the Murun massif (Eastern Siberia, Russia) // Geology of ore deposits. 2001. Vol. 43 (6). P. 524–539.

Vorobyov E.I., Konev A.A., Malshonok Yu.D., Afonina G.G., Feoktistova L.P., Piskunova L.F. Mineralogical features of strontium-barium (benstonite) carbonatites as a new type of ore / Applied mineralogy of Eastern Siberia. Irkutsk: Publishing house of Irkutsk University, 1992. P. 102–116 [Воробьев Е.И., Конев А.А., Мальшонок Ю.Д., Афонина Г.Г., Феоктистова Л.П., Пискунова Л.Ф. Минералогические особенности стронций-бариевых (бенстонитовых) карбонатитов как нового типа руд / Прикладная минералогия Восточной Сибири. Иркутск: Изд-во ИГУ, 1992. С. 102–116]

Wang Ch., Liu J., Zhang H., Zhang X., Zhang D., Xi Zh., Wang Z. Geochronology and mineralogy of the Weishan carbonatite in Shandong province, eastern China // Geoscience Frontiers. 2019. Vol. 10. P. 769−785. http://dx.doi.org/10.1016/j.gsf.2018.07.008

Yang Z., Woolley A. Carbonatites in China: A review // Journal of Asian Earth Sciences. 2006. Vol. 27. P. 559–575. doi: 10.1016/j.jseaes.2005.06.009

Zindler A., Hart S.R. Chemical geodynamics // Annual Reviews of Earth and Planetary Science. 1986. Vol. 14. P. 493–571.

 

Rasskazov Sergei,

doctor of geological and mineralogical sciences, professor,

664033, Irkutsk, Lermontov st., 128,

Institute of the Earth's Crust SB RAS,

Head of the Laboratory for Isotopic and Geochronological Studies,

664025, Irkutsk, Lenin st., 3,

Irkutsk State University, Faculty of Geology,

Head of Dynamic Geology Char,

tel.: (3952) 51–16–59,

email: rassk@crust.irk.ru

 

Yasnygina Tatyana,

candidate of geological and mineralogical sciences,

664033, Irkutsk, Lermontov st., 128,

Institute of the Earth's Crust SB RAS,

Senior Researcher,

tel.: (3952) 51–16–59,

email: ty@crust.irk.ru

 

Chuvashova Irina,

candidate of geological and mineralogical sciences,

664033, Irkutsk, Lermontov st., 128,

Institute of the Earth's Crust SB RAS,

Senior Researcher,

664025, Irkutsk, Lenin st., 3,

Irkutsk State University, Faculty of Geology,

Associate Professor of Dynamic Geology Char,

tel.: (3952) 51–16–59,

email: chuvashova@crust.irk.ru

 

Saranina Elena,

candidate of geological and mineralogical sciences,

664033, Irkutsk, Lermontov st., 128,

Institute of the Earth's Crust SB RAS,

Lead Engineer,

664033, Irkutsk, Favorsky st., 1A, A.P. Vinogradov Institute of Geochemistry SB RAS,

email: e_v_sar@mail.ru

 

 

 



Article received: 07.09.2025; corrected: 14.09.2025; accepted: 26.09.2025.

FOR CITATION: Rasskazov S.V., Yasnygina T.A., Chuvashova I.S., Saranina E.V. Contrast Evolution of Indian and North Asian Tectonosphere: Pb-Isotope Ages of Deep Sources for Carbonatite-Alkaline Igneous Complexes and Ba–Sr Signatures of Rocks // Geology and Environment. 2025. Vol. 5, No. 3. P. 94–125. DOI 10.26516/2541-9641.2025.3.94. EDN: VIBTBF


Read the full article (English)


Send Feedback Email


© 2021-2025   Scientific electronic peer-reviewed journal "Geology and Environment". All rights reserved.
[Back to previous page]