S.V. Rasskazov 1,2, Yu. Ailow 1,3, I.S. Chuvashova 1,2, T.A. Yasnygina 1
1Institute of the Earth's Crust SB RAS, Irkutsk, Russia
2Irkutsk State University, Irkutsk, Russia
3Al-Furat University, Deir ez-Zor, Syria
Rasskazov Sergei Vasilievich,
doctor of geological and mineralogical sciences, professor,
664003 Irkutsk, st. Lenina, 3,
Irkutsk State University, Faculty of Geology,
Head of the Department of Dynamic Geology,
664033 Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
Head of the Laboratory of Isotopy and Geochronology,
tel.: (3952) 51–16–59,
еmail: rassk@crust.irk.ru.
Ailow Youssef,
senior laboratory assistant, PhD student,
664003 Irkutsk, st. Lenina, d. 3,
Irkutsk State University, Faculty of Geology,
assistant professor,
664033 Irkutsk, st. Lermontov, d. 128,
Institute of the Earth's Crust SB RAS,
Senior Researcher,
еmail: youseph.gh.g@gmail.com.
Chuvashova Irina Sergeevna,
candidate of geological and mineralogical sciences,
664003 Irkutsk, st. Lenina, d. 3,
Irkutsk State University, Faculty of Geology,
assistant professor,
664033 Irkutsk, st. Lermontova, d. 128,
Institute of the Earth's Crust SB RAS,
Senior Researcher,
tel.: (3952) 51–16–59,
еmail: chuvashova@crust.irk.ru.
Yasnygina Tatyana Alexandrovna,
candidate of geological and mineralogical sciences
664033 Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
Senior Researcher,
tel.: (3952) 51–16–59,
еmail: ty@crust.irk.ru.
Abstract. From compositions of garnet-bearing and garnet-free assemblages of deep-seated nodules brought to a surface by Cenozoic and older (Phanerozoic) magmatic melts, petrological zones of crust-mantle transition (PZСMT) are defined under granulite terranes of craton and non-craton regions. Present-day Moho discontinuities only partially coincide with petrological estimates of a change from felsic-basic rocks (that belong to the continental crust) by predominantly ultramafic rocks (that represent the continental mantle lithosphere) and often lie much deeper than the PZСMT. Depths of such zones change over time. For a garnet-free assemblage of deep-seated nodules ejected by basaltic melts about 13 Ma ago from the root of a granulite terrane exposed in the eastern part of the Tunka Valley, two PT trends were obtained, one of which corresponds to a high (up to 120 mW/m2) rift conductive geotherm, another one crosses low conductive geotherms (drops below 60 mW/m2 one). The PZСMT shows here a temperature approximately 200°C lower than the PZСMT of granulite terranes in Eastern Australia, China, and Svalbard. Deep-seated nodules characterize the development of hot transtension under the rift valley in the cold root part of the East Tunka block with the accumulation and release of elastic stresses accompanied by significant synkinematic (metasomatic and magmatic) processes in the time interval 18–12 Ma ago. The transtension was followed by a crustal transpression with inversional uplift of an area and a probable relative increase in the depth of the Moho discontinuity, determined from the both P- and S-wave velocities for the modern crust and lithospheric part of the mantle.
Keywords: transtension, transpression, 207Pb–206Pb dating, volcanic rocks, ophiolites, Hadean, Archean, Proterozoic, Cenozoic.
P. 91–127
Ailo Yu., Rasskazov S.V., Chuvashova I.S., Yasnygina T.A. Correlations of rocks of primitive mantle, restitutes and metasomatites in the inclusions of bazanites of the Karierny volcano (Western Baikal region) // Izvestiya Irkutskogo gosudarstvennogo universiteta. Serie Nauki o Zemlya. 2019. V. 29. P. 3–23. https://doi. org/10.26516/2073-3402.2019.29.3
Ailo Yu., Rasskazov S.V., Chuvashova I.S., Yasnygina T.A. Olivin as an indicator of the polygenetic association of inclusions in the late Cainozoic volcanic rocks of the Tunka Valley, Baikal Rift Zone // Lithosphere. 2021. V. 21, No. 4, P. 517–545.
Ashchepkov I.V., Travin A.V., Saprykin A.I., Andre L., Gerasimov P.A., Khmelnikova O.S. On the age of xenolithic basalts and mantle evolution in the Baikal rift zone // Geology and geophysics. 2003. V. 44, No 11. P. 1162–1190.
Belichenko V.G., Reznitsky L.Z., Makrygina V.A., Barash I.G. Terreiny Baikal-Khubsugul fragment of the Central Asian mobile belt of palezoids. The state of the problem // Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from the ocean to the continent): Meeting materials. Irkutsk: IZK SB RAS. 2006. V. 1. P. 37–40.
Belousov V.V. Earth's crust and the upper mantle of the oceans. M.: Nauka, 1968. 255 p.
Vasiliev E.P., Belichenko V.G., Reznitsky L.Z. Correlation of ancient and Cenozoic structures on the south-western flank of the Baikal rift zone // Doklady RAN. 1997. V. 353, No. 6. P. 789–792.
Vasiliev E.P., Reznitsky L.Z., Vishnyakov V.N., Nekrasova E.A. Slyudyansky crystalline complex. Novosibirsk: Nauka, 1981. 197 p.
Genshaft Yu.S., Saltykovsky A.Ya. Catalogue of inclusions of deep rocks and minerals in the basalts of Mongolia // M.: Nauka, 1990. 71 p.
Grudinin M.I., Rasskazov S.V., Kovalenko S.N., Ilyasova A.M. Rannpaleozoic gabbro-sienite Snezhninskiy massif Yugo-Zapadnogo Pribaikal'ya // Geology and geophysics. 2004. V. 45, No. 9. P. 1092–1101.
Zamaraev S.M., Vasiliev E.P., Mazukabzov A.M., Ruzhich V.V. Correlation of ancient and Cenozoic structures in the Baikal rift zone. Novosibirsk: Nauka. Sibirskoe otdelenie, 1979. 125 p.
Zorin Yu.A., Golubev V.A., Novoselova M.R. Geophysical data on late Cainozoic intrusions under Baikal. Dokl. Academy of Sciences of the USSR, 1979, vol. 249, No I. P. I58–I6I.
Kepezhinskas V.V. Cenozoic alkaline basaltoids of Monglia and their deep inclusions. M.: Nauka, 1979. 312 p.
Krylov S.V., Mandelbaum M.M., Mishenkin B.P., Mishenkina Z.R., Petrik G.V., Seleznev V.S. Nedra Baikala by seismic data. Novosibirsk: Nauka. Sib. otd.-niye, 1981. 105 p.
Lukhnev A.V., Sankov V.A., Miroshnichenko A.I., Levi K.G., Bashkuev Yu.B., Dembelov M.G., Zalutsky V.T., Kale E., Deversher Zh., Vernol M., Bekhtur B., Amarjargal Sh. New data on modern tectonic deformations of the southern mountain frame of the Siberian platform // Doklady AN. 2003. V. 389, No. 1. P. 100–103.
Mordvinova V.V., Kobelev M.M., Treusov A.V. et al. Deep structure of the transition zone Siberian platform - Central Asian mobile belt on teleseismic data // Geodynamics and tectonophysics. 2016. V. 7, No. 1. P. 85–103.
Mordvinova V.V., Kobelev M.M., Khritova M.A., Turutanov E. Kh., Kobeleva E.A., Trynkova D.S., Tsydypova L. R. Deep speed structure of the southern outskirts of the Siberian kraton and Baikal riftogenesis // Doklady AN. 2019. V. 484, No. 1. P. 93–97. doi.org/10.31857/S0869-5652484193-97.
Rasskazov S.V. Basaltoids of Udokan. Novosibirsk: Nauka, 1985. 142 p.
Rasskazov S.V., Chuvashova I.S. Volcanism and transtension in the north-east of the Baikal rift system. Novosibirsk: Akademicheskie izd-vo «Geo», 2018. 384 p. https://doi.org/10.21782/B978-5-6041446-3-3
Rasskazov S.V., Bogdanov G.V., Medvedeva V.I. Xenoliths of skarn-like clinopyroxenites from basalts of the Tunka depression of the Baikal rift zone // Geology and geophysics. 1989a, No. 7. P. 54–61.
Rasskazov S.V., Bogdanov G.V., Medvedeva T.I. K mineralogy of amphibole-containing deep inclusions from basalts of the Tunka depression of the Baikal rift zone // Notes of the All-Union Mineralogical Society. 1989b, No. 4. C. 56–64.
Rasskazov S.V., Bogdanov G.V., Medvedeva T.I., Elizaryeva T.I., Tatarinov A.V. Deep xenoliths from the volcanoites of Bartoya (Western Transbaikalia) // Volcanology and seismology. 1989v. No. 3. P. 38–48.
Rasskazov S.V., Bogdanov G.V., Medvedeva T.I. Minerals of deep inclusions from different age basalts of the Tunkinskaya depression // Applied mineralogy of Eastern Siberia. Irkutsk: Izd-vo Irkut. Un-ta, 1992. P. 153–168.
Rasskazov S.V., Ivanov A.V., Demonterova E.I. Deep inclusions from the bazanites of Zun-Murina (Tunkinskaya rift valley, Pribaikalye) // Geology and geophysics. 2000. V. 40, No. 1. P. 100–110.
Rasskazov S.V., Yasnygina T.A., Chuvashova I.S., Mikheeva E.A., Snopkov S.V. Kultuk volcano: spatio-temporal change of magmatic sources at the western end of the South Baikal depression in the interval 18–12 million years ago // Geodynamics & Tectonophysics. 2013. V. 4. No. 2. P. 135–168. doi:10.5800/GT2013420095.
Seminsky K.Zh., Bornyakov S.A., Dobrynina A.A., Radziminovich N.A., Rasskazov S.V., Sankov V.A., Mialle P., Bobrov A.A., Ilyasova A.M., Salko D.V., Sankov A.V., Seminsky A.K., Chebykin E.P., Shagun A.N., German V.I., Tubanov Ts.A., Ulzibat M. Bystrinskoe earthquake in the Southern Baikal region (21.09.2020, Mw=5.4): main parameters, signs of preparation and accompanying effects // Geology and geophysics. 2021. V. 62, No. 5. P. 727–743.
Shafeev A.A. Dokembrian of the South-Western Baikal Region and Khamar-Daban. M. Nauka, 1970. 179 p.
Chuvashova I.S., Rasskazov S.V. Sources of magmatism in the mantle of the evolving Earth. Irkutsk: Izd-vo ISU, 2014. 291 p.
Amundsen H.E.F., Griffin W.L., O'Reilly S.Y. The lower crust and upper mantle beneath northwestern Spitsbergen: evidence from xenoliths and geophysics // Tectonophysics. 1987. V. 139. P. 169–185.
Amundsen H.E.F., Griffin W.L., O'Reilly S.Y. The nature of the lithosphere beneath northwestern Spitsbergen: xenolith evidence. Norges Geologiske Undersøkelse Special Publication. 1988. V. 3. P. 58–65.
Ashchepkov I.V., Ntaflos T., Logvinova A.M., Spetsius Z.V., Downes H., Vladykin N.V. Monomineral universal clinopyroxene and garnet barometers for peridotitic, eclogitic and basaltic systems // Geoscience Frontiers. 2017, No. 8. P. 775–795. DOI: 10.1016/j.gsf.2016.06.012
Ashchepkov I.V., Pokhilenko N.P., Vladykin N.V., Logvinova A.M., Kostrovitsky S.I., Afanasiev V.P., Pokhilenko L.N., Kuligin S.S., Malygina L.V., Alymova N.V., Khmelnikova O.S., Palessky S.V., Nikolaeva I.V., Karpenko M.A., Stegnitsky Y.B. Structure and evolution of the lithospheric mantle beneath Siberian craton, thermobarometric study // Tectonophysics. 2010. V. 485. P. 17–41.
Berger J., Féménias O., Coussaert N., Mercier J-C C., Demaiffe D. Cumulating processes at the crust-mantle transition zone inferred from Permian mafic-ultramafic xenoliths (Puy Beaunit, France) // Contrib Mineral Petrol. 2007. V. 153. P. 557–575. DOI 10.1007/s00410-006-0162-8
Chan W.W., Mitchell B.J., 1982. Synthetic seismogram and surface wave constraints on crustal models of Spitsbergen // Tectonophysics. V. 89. P. 51–76.
Chen S., O'Reilly S.Y., Zhou X., Griffin W.L., Zhang G., Sun M., Feng J., Zhang M. Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths // Lithos. 2001. V. 56. P. 267–301.
Cherniak D.J. Lanford W.A, Ryerson F.J. Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques // Geochim. Cosmochim. Acta. 1991. V. 55, No. 6. P. 1663–1673.
Choi S.H., Mukasa S.B., Zhou X.-H., Xian X.H., Andronikov A.V. Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China // Chem. Geol. 2008. V. 248. P. 40–61. doi: 10.1016/j.chemgeo.2007.10.008
Choi S.H., Suzuki K., Mukasa S.B., Lee J.-I., Jung H. Lu–Hf and Re–Os systematics of peridotite xenoliths from Spitsbergen, Western Svalbard: implications for mantle–crust coupling // Earth Planetary Science Letters. 2010. V. 297. P. 121–132.
Chuvashova I. Rasskazov S., Sun Yi-min, Yasnygina T., Saranina E. Lateral change of ELMU–LOMU sources for Cenozoic volcanic rocks from Southeast Mongolia and North China: Tracing zonation of solidified Hadean magma ocean // EGU22-6724. EGU General Assembly Abstracts. 2022.
Cowan D.S. Do faults preserve a record of seismic slip? A field geologist's opinion // Journal of Structural Geology 1999. V. 21, No. 8–9. P. 995–1001. https://doi.org/10.1016/S0191-8141(99)00046-2
Daly E., Keir D., Ebinger C.J., Stuart G.W., Bastow I.D., Ayele A. Crustal tomographic imaging of a transitional continental rift: the Ethiopian rift // Geophysical Journal International. 2008. V. 172. P. 1033–1048.
Finlayson, D.M., Proedehl, C., Collins, C.D.N. Explosion seismic profiles and implications for crustal evolution in southeastern Australia // BMR Journal of Australian Geology and Geophysics. 1979. V. 4. P. 243–252.
Finlayson D.M., Owen A., Johnstone D., Wake-Dyster K.D. Moho and petrologic crust–mantle boundary coincide under southeastern Australia // Geology. 1993. V. 21. P. 707–710.
Fountain D.M., Christensen N.I. Composition of the continental crust and upper mantle: a review // Memoir of Geological Society of America. 1989. V. 172. P. 711–742.
Gao S. Chemical composition of the continental crust: a perspective from China // Geochemical News. 2010. V. 143. 10 р.
Griffin W.L., O'Reilly S.Y. The lower crust in eastern Australia: xenolith evidence / Dawson J.B., Carswell, D.A., Hall, J.H., Wedepohl, H. (Eds.), Geological Society London Special Publications. 1986. V. 24. P. 363–374.
Griffin W.L., O'Reilly S.Y. Is the Moho the crust–mantle boundary? // Geology. 1987. V. 15. P. 241–244.
Griffin W.L., Nikolic N., O'Reilly S.Y., Pearson N.J. Coupling, decoupling and metasomatism: Evolution of crust-mantle relationship beneath NW Spitsbergen // Lithos. 2012. V. 149. P. 115–139.
Griffin, W.L., Sutherland, F.L., Hollis, J.D. Geothermal profile and crust–mantle transition beneath east-central Queensland: volcanology, xenolith petrology and seismic data // Journal of Volcanology and Geothermal Research. 1987. V. 31. P. 177–203.
Goncharov A.G., Ionov D.A. Redox state of deep off-craton lithospheric mantle: New data from garnet and spinel peridotites from Vitim, southern Siberia // Contrib. Mineral. Petrol. 2012. V. 164. No. 5. P. 731–745. DOI:10.1007/s00410-012-0767-z
Ionov D.A., Kramm U., Stosh H.-G. Evolution of the upper mantle beneath the southern Baikal rift zone: an Sm–Nd isotope study of xenoliths from the Bartoy volcanoes // Contrib. Miner. Petrol. 1992. V. 111. P. 235–247.
Ionov D.A., O’Reilly S.Y., Ashchepkov I.V. Feldspar-bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia // Contrib. Meneral. Petrol. 1995. V. 122. P. 174–190.
Jiao S., Guo J., Evans N.J., Mcdonald B.J.,·Liu P., Ouyang D., Fitzsimons I.W. The timing and duration of high temperature to ultrahigh temperature metamorphism constrained by zircon U–Pb–Hf and trace element signatures in the Khondalite Belt, North China Craton // Contrib. Mineral. Petrol. 2020. P. 175–66. https://doi.org/10.1007/s00410-020-01706-z
Hasterok D., Chapman D.S. Heat production and geotherms for the continental lithosphere // Earth Planet Sci. Letters. 2011. V. 307. P. 59–70.
Herzberg C.T. Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving clinopyroxenes in the system CaO–MgO–Al2O3–SiO2 // Geochim. Cosmochim. Acta. 1978. V. 42. P. 945–957.
Koga K.T., Shimizu N., Grove T.L. Disequilibrium trace element redistribution during garnet to spinel facies transformation // In Proceedings of the VIIth International Kimberlite Conference (eds. J. Gurney John L. Gurney James D. Pascoe Michelle, and H. Richardson Stephen). Red Roof Designs, Cape Town. 1999. V. 1. P. 444–451.
Keller G.R., Prodehl C., Mechie J., Fuchs K., Khan M.A., Maguire P.K.H., Mooney W.D., Achauer U., Davis P.M., Meyer R.P., Braile L.W., Nyambok I.O., Thompson G.A. The East African rift system in the light of KRISP 90 // Tectonophysics. 1994. V. 236. P. 465–483.
Li S., Mooney W.D., Fan J. Crustal structure of mainland China from deep seismic sounding data // Tectonophysics. 2006. V. 420, No. 1–2. P. 239–252.
Liao Q.-L., Wang Z.-M., Wang P.-L., Yu Z.-K., Wu N.-Y., Lie B.-C. Explosion seismic study of the crustal structure in Fuzou–Quanzhou–Shatou region // Acta Geophysical Sinica. 1988. V. 2. P. 270–280 (in Chinese).
Lyngsie T.B., Thybo H., Lang R. Rifting and lower crustal reflectivity: a case study of the intracratonic Dnieper-Donets rift zone, Ukraine // Journal of Geophysical Research. 2007. V. 112. P. B12402.
Maruyama S.; Santosh M.; Zhao D. Superplume, supercontinent, and postperovskite: Mantle dynamics and anti-plate tectonics on the core–mantle boundary // Gondwana Res. 2007. V. 11. P. 7–37.
Mathur S.P. Improvements in seismic reflection techniques for studying the lithosphere in Australia // Tectonophysics. 1984. V. 105. P. 373–381.
Mercier J.C.C. Single-pyroxene thermobaromrtry // Tectonophysics. 1980. V. 70, No. 1/2. P. 1–37.
Musaccio G., Zappone A., Cassinis R., Scarascia S. Petrographic interpretation of a complex seismic crust–mantle transition in the central-eastern Alps. Tectonophysics. 1998. V. 294. P. 75–88.
Nielsen C., Thybo H. Lower crustal intrusions beneath the southern Baikal Rift Zone: Evidence from full-waveform modelling of wide-angle seismic data // Tectonophysics. 2009. V. 470. P. 298–318.
O'Reilly S.Y., Griffin W.L. A xenolith-derived geotherm from southeastern Australia and its geophysical implications // Tectonophysics. 1985. V. 111. No. 1/2. P. 41–63.
O'Reilly S.Y., Griffin W.L. Moho vs crust–mantle boundary: Evolution of an idea // Tectonophysics. 2013. V. 609. P. 535–546.
Paquette J-L., Christian Chopin C., Peucat J-J. U–P zircon, Rb–Sr and Sm–Nd geochronology of high- to very-high-pressure meta-acidic rocks from the western Alps // Contrib. Mineral. Petrol. 1989. V. 101. P. 280–289.
Pollack H.N., Chapman D.S. On the regional variation of heat flow, geotherms and lithospheric thickness // Tectonophysics. 1977. V. 38. P. 279–296.
Rasskazov S.V., Brandt S.B., Brandt I.S. Radiogenic isotopes in geologic processes. Springer, 2010. 306 p.
Rasskazov S., Chuvashova I, Saranina E., Yasnygina T., Ailow Y. Crustal versus mantle events of 2.44–2.22 and 1.63–1.31 Ga at the junction between Khamardaban terrane, Tuva-Mongolian microcontinent, and Siberian paleocontinent: Petrogenetic consequences // EGU22-6686. EGU General Assembly Abstracts. 2022.
Rasskazov S., Chuvashova I., Yasnygina T., Saranina E. Mantle evolution of Asia inferred from Pb isotopic signatures of sources for Late Phanerozoic volcanic rocks // Minerals 2020, 10 (9): 739; doi:10.3390/min10090739
Rasskazov S., Chuvashova I., Yasnygina T., Saranina E., Gerasimov N., Ailow Y., Sun Y.-M. Tectonic generation of pseudotachylytes and volcanic rocks: Deep-seated magma sources of crust-mantle transition in the Baikal Rift System, Southern Siberia // Minerals. 2021. V. 11. No. 5. P. 487.
Ross C.S., Foster M.D., Myers A.T. Olivine in dunites and olivine-rich inclusions in basaltic rocks // Amer. Mineralogists. 1954. V. 39, N 9–10. P. 20–36.
Rubie D.C., Nimmo F., Melosh H.J. Formation of Earth’s Core / Treatise on Geochemistry. Elsevier B.V., 2007. P. 51–90.
Rudnick R.L., Gao S. The Composition of the Continental Crust. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry. 2003. V. 3. The Crust, Elsevier-Pergamon, Oxford, 1-64. http://dx.doi.org/10.1016/b0-08-043751-6/03016-4
Rudnick R.L., Gao S., Ling W-l, Liu Y-s, McDonough W.F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton // Lithos. 2004. V. 77. P. 609–637.
Rudnick R.L., Fountain D.M. Nature and composition of the continental crust: a lower crustal perspective // Reviews of Geophysics. 1995. V. 33. No. 3. P. 267–309.
Sibson R.H. Fault rocks and fault mechanisms // J. Geol. Soc. London. 1977. V. 133. P. 191–213.
Swanson M.T. Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation // Tectonophysics. 1992. V. 204, No. 3–4. P. 223–242. https://doi.org/10.1016/0040-1951(92)90309-T
Swanson M.T. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones // Journal of Structural Geology. 2005. V. 27. P. 871–887. https://doi:10.1016/j.jsg.2004.11.009
Su B.X., Wang J., Liu X., Bai Y., Yang Y.-H., Bao Z.-A., Sakyi P.A. Mantle and crust interaction scenario at the crust-mantle transition zone: Depicted from inter-layered pyroxenite-granulite xenolith in Hannuoba area, North China Craton // Phys. Earth Planet. Inter. 2020. V. 309. P. 106594. doi:10.1016/j.pepi.2020.106594
Taylor S.R., McLennan S.M. The continental crust: its composition and evolution. Blackwell: Scientific Publications, 1985. 312 р.
Thybo H., Maguire P.K.H., Birt C., Perchue E. Seismic reflectivity and magmatic underplating beneath the Kenya Rift // Geophysical Research Letters. 2000. V. 27. P. 2745–2748.
Wei Y., Mukasa S.B., Zheng J., Fahnestock M.F., Bryce J.G. Phanerozoic lower crustal growth from heterogeneous mantle beneath the North China Craton: Insights from the diverse Hannuoba pyroxenite xenoliths // Lithos. 2019. V. 324–325. P. 55–67. https://doi:10.1016/j.lithos.2018.11.001
Wilde, S.A., Zhou, X., Nemchin, A.A., 2003. Mesozoic crust–mantle interaction beneath the North China Craton: a consequence of the dispersal of Gondwana and the accretion of Asia. Geology 31, 817–820.
Xu X., O'Reilly S.Y., Zhou X., Griffin W.L. A xenolith-derived geotherm and the crust–mantle boundary at Qilin, southeastern China // Lithos. 1996. V. 38. P. 41–62.
Xu X., Griffin W.L., O'Reilly S.Y., Pearson N.J., Geng H., Zheng J.P. Re–Os isotopes in mantle xenoliths from eastern China: age constraints and evolution of lithospheric mantle // Lithos. 2008. V. 102. P. 49–64.
Yu C.M., Zheng J.P., Griffin W.L. In situ Re–Os isotope ages of sulfides in Hannuoba peridotitic xenoliths: significance for frequently-occurring mantle events beneath the North China Block // Chinese Science Bulletin. 2007. V. 52. P. 2847–2853.
Zheng J. Thermal structure and lithosphere thickness in Eurasia // Deep 2021. Nanjing, China.
Zheng J., Griffin W.L., O'Reilly S.Y., Lu F., Wang C., Zhang M., Wang F., Li H. 3.6 Ga lower crust in central China: new evidence on the assembly of the North China Craton // Geology. 2004. V. 32. P. 229–232.
Zheng J.P., Griffin W.L., Qi L., O'Reilly S.Y., Sun M., Zheng S., Pearson N., Yu C.M., Su Y.P., Tang H.Y. Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton // Chemical Geology. 2009. V. 264. P. 266–280.
Zheng J.P., Griffin W.L., O’Reilly S.Y., Hu B.Q., Zhang M., Tang H.Y., Su Y.P., Zhang Z.H., Pearson N., Wang F.Z., Lu F.X. Continental collision and accretion recorded in the deep lithosphere of central China // Earth and Planetary Science Letters. 2008. V. 269. P. 496–506.
Zheng J.P., Griffin W.L., Ma Q., O'Reilly S.Y., Yu C.M., Xiong Q. Accretion and reworking beneath the North China Craton: A synthesis // Lithos. 2012. V. 149. P. 61–78.
Zou H., Zindler A., Xu X. et al. Major, trace element, and Nd, Sr, and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance // Chemical Geology. 2000. V. 171. P. 33–47.
Rasskazov S.V. Relationship between petrological core-mantle transition and the seismic Moho discontinuty below granulite terranes: evidence on transformation of a root part beneath the Eastern Tunka block in deep-seated nodules from late ceniozoic volcanic rocks [Electronic resource] / S.V. Rasskazov, Yu. Ailow, I.S. Chuvashova, T.A. Yasnygina // Geology and Environment.— 2022.— V. 2, No. 2.— P. 91–127. DOI 10.26516/2541-9641.2022.2.91
Access Mode: http://geoenvir.ru/archive/g&e22-2-2/rasskazov22-2a.htm (30.06.2022).