Кнопка
Bibliography
UDC 551.243 (51)
https://doi.org/10.26516/2541-9641.2023.1.52

Stages of Stick-Slip Preparation on Precut Faults in Laboratory Models, and Verification of the Stages in Nature



Authors


S.A. Bornyakov a, A.A. Karimova a,d, Y. Guob, I.A. Panteleevc, Y-Q Zhuob, A.A. Dobryninaa, V.A. Sankova,d, D.V. Salkoa, A.N. Shaguna, A.A. Karimovaa,d


aInstitute of the Earth's Crust, Siberian Branch of RAS, Irkutsk, Russia

bInstitute of Geology, China Earthquake Administration, Beijing, China

cInstitute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, Perm, Russia

dIrkutsk State University, Irkutsk, Russia



About the Authors


Bornyakov Sergey Alexandrovich,

candidate of geological and mineralogical sciences,

664033 Irkutsk, Lermontov str., d. 128,

Institute of the Earth's Crust SB RAS,

Leading Researcher,

email: bornyak@crust.irk.ru.

Guo Yanshuang,

Doctor of science,

Institute of Geology, China Earthquake Administration, Beijing, China,

Researcher,

еmail: guoysh@ies.ac.cn.

Panteleev Ivan Alexeevich,

candidate of geological and mineralogical sciences,

Institute of Continuous Media Mechanics, Ural Branch of the Russian Academy of Sciences, Perm, Russia,

Senior Researcher,

еmail: pia@icmm.ru.

Zhuo Yan-Qun,

Doctor of science,

Institute of Geology, China Earthquake Administration, Beijing, China,

Researcher,

еmail: zhuoyq@ies.ac.cn.

Dobrynina Anna Alexandrovna,

candidate of geological and mineralogical sciences,

664033 Irkutsk, Lermontov str., 128,

Institute of the Earth's Crust SB RAS,

Scientific secretary,

еmail: scisecretary@crust.irk.ru.

Sankov Vladimir Anatolevich,

candidate of geological and mineralogical sciences,

664033 Irkutsk, Lermontov str., 128,

Institute of the Earth's Crust SB RAS,

Deputy Director for Science,

664003 Irkutsk, Lenin str., 3,

Irkutsk State University, Faculty of Geology,

Assystent Professor,

еmail: sankov@crust.irk.ru.

Salko Denis Vladimirovich,

664033 Irkutsk, Lermontov str., 128,

Institute of the Earth's Crust SB RAS,

engineer,

еmail: salko@crust.irk.ru.

Shagun Artem Nikolaevich,

candidate of geological and mineralogical sciences,

664033 Irkutsk, Lermontov str., 128,

Institute of the Earth's Crust SB RAS,

Lead Engineer,

еmail: shagun@crust.irk.ru.

Karimova Anastasia Alekseevna,

candidate of geological and mineralogical sciences

664033 Irkutsk, Lermontov str., 128,

Institute of the Earth's Crust SB RAS,

Junior Researcher,

664003 Irkutsk, Lenin str., 3,

Irkutsk State University, Faculty of Geology,

Senior Lecturer,

еmail: geowomen_nasty@mail.ru.



Abstract. This study is focused on analog modeling of the stick-slip process along an existing large fault in an elastic-viscoplastic model subjected to loading at a constant strain rate. Based on our model results and data from (Ma et al., 2012, 2014), we distinguish stable, meta-stable, and meta-instable stages of the stick-slip process (the latter includes the early and late sub-stages). Our experiments show that the fault is periodically reactivated by segmentation. We analysed this mechanism from one fault reactivation to another, and identified regressive and progressive trends of segmentation. The regressive segmentation takes place during the stable and meta-stable stages of the stick-slip process. Under regressive segmentation the number of active segments and their lengths are reduced. The progressive segmentation is initiated at the early meta-instable sub-stage of the stick-slip process. Its activity is desplayed by an increase in the number of active segments to a certain critical density, while their pattern becomes more chaotic. In the late sub-stage, number of segments decreases as they rapidly grow and join with each other to form larger active segments, up to full reactivation of the entire fault.

For comparison with the model results, we interpret rock deformation monitoring records before the Bystroe earthquake. Our analysis confirms specific features of the anomalous rock deformation that are similar to the strain features observed along the model fault during the meta-instable stage. There are evidence to suggest that meta-instability of a fault is a potential candidate to short-term precursor of earthquakes.


Keywords: analogue modeling, stick-slip, fault, segmentation, meta-instable stage, earthquake, precursor.


P. 52–71


References


Aki, K., 1965. Maximum likelihood estimate of bin the formula logN = a−bm and its confidence limits. Bulletin of the Earthquake Research Institute, University of Tokyo 43, 237–238.

Bak, P., Tang C., 1989. Earthquakes as a self-organized critical phenomenon. Journal of Geophisical Research 94(B11), 15635–15637. doi.org/10.1029/JB094iB11p15635

Bornyakov, S.A., Dobrynina, A.A., Seminsky, K.Zh., Sankov, V.A., Radziminovich, N.A., Salko, D.V., Shagun, A.N., 2021. Bystrinsky earthquake in the Southern Pribaikalye (21.09.2020, MW =5.4): general characteristic, basic parameters and deformation signs of the transition of the fosi to the meta-unstable state. Doklady Earth Sciences 498(1), 84–88. doi.org/10.31857/S2686739721050042

Bornyakov, S.A., Semenova N.V., 2011. Dissipative processes in fault zones (based on physical modeling results). Russian Geology and Geophysics 52(6), 676– 683. doi.org/10.1016/j.rgg.2011.05.010

Bornyakov, S.A., Seminsky, K.Z., Buddo, V.Y., Miroshnichenko, A.I., Cheremnykh, A.V., Cheremnykh, A.S., Tarasova, A.A., 2014. Main regularities of faulting in lithosphere and their application (based on physical modeling results). Geodynamics and Tectonophysics 5(4), 823–861 (in Russian). doi.org/10.5800/GT-2014-5-4-0159.

Bornyakov, S. A., Panteleev, I. A. (2018). The segmentation mechanism of periodic reactivation of a fault: results of physical modeling. Doklady Earth Sciences 482(1), 1178–1181. doi.org/10.1134/S1028334X18090039

Brace, W.F., Byerlee, J.D., 1966. Stick-slip as a mechanism for earthquake. Science 153, 990–992. Brillouin, L., 1964. Science and Information Theory. Acad. Press Publ., New York, 164 pp.

Brown, J.R., Beroza, G.C., Ide, S., Ohta, K., Shelly, D.R., Schwartz, S.Y., Rabbel, W., Thorwart, M., Kao, H., 2009. Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones. Geophysical Research Letters 36, L19306. doi:10.1029/2009GL040027

Bruhat, L., S. Barbot, J.-P. Avouac, 2011. Evidence for postseismic deformation of the lower crust following the 2004 Mw6.0 Parkfield earthquake, J. Geophys. Res. 116, B08401. doi:10.1029/2010JB008073.

Bürgmann, R., G. Dresen, 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Planet. Sci. 36, 531–567. doi:10.1146/annurev.earth.36.031207.124326.

Caniven, Y., S. Dominguez, R. Soliva, R. Cattin, M. Peyret, M. Marchandon, C. Romano, V. Strak, 2015. A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle. Tectonics 34(2), 232-264. doi:10.1002/2014TC003701.

Ciliberto, S., Laroche, C., 1994. Experimental evidence of self-organization in the stick-slip dynamics of two rough elastic surface. Journal de Physique 4, 223–236. doi:10.1051/jp1:1994134

Corbi, F., F. Funiciello, M. Moroni, Y. van Dinther, P.M. Mai, L.A. Dalguer, C. Faccenna, 2013. The seismic cycle at subduction thrusts: 1.Insights from laboratory models. J. Geophys. Res. Solid Earth 118, 1483–1501. doi:10.1029/2012JB009481.

Feder, J., 1988. Fractals. Plenum Press, New York. doi.org/10.1007/978-1-4899-2124-6. Feder J. S., Feder J., 1991. Self-organized criticality in stick-slip process. Physical Review Letters 66(20), 2669–2672. doi.org/10.1103/PhysRevLett.66.2669.

Haken, H., 1977. Synergetics. An Introduction. Springer-Verlag, Berlin–Heidelberg–New York. 325 pp. Hirata, T., 1989. Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scales. Pure Applied Geophysics 131, 157–170. doi:10.1007/BF00874485.

Hubbert, M.K., 1937. Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin 48, 1459–152.

Geller R.J., 2007. Earthquake prediction: a critical review. Geophysical Journal International 131(3), 425–450. doi.org/10.1111/j.1365-246X.1997.tb06588.x

Golitsyn, G.S., 1996. Earthquakes from the standpoint of similarity theory. Doklady Earth Sciences 346(4), 563–539.

Gomberg, J., Rubinstein, J.L., Peng, Z.G., Creager, K.C., Vidale, J. E., Bodin, P., 2008. Widespread triggering of nonvolcanic tremor in California. Science 319(5860), 173. doi.org/10.1126/science.1149164.

Gudmundsson, A., Mohajeri, N., 2013. Relations between the scaling exponents, entropies, and energies of fracture networks. Bulletin de la Societe Geologique de France 184(4–5), 373–382. doi.org/10.2113/gssgfbull.184.4-5.373.

Guo, Y., Zhuo, Y., Liu, P., Chen, S., Ma, J., 2020. Experimental study of observable deformation process in fault meta-instability state before earthquake generation. Geodynamics and Tectonophysics 11(2), 417–430. doi.org/10.5800/GT-2020-11-2-0483.

Gzovsky, М.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 pp. (in Russian) Idehara, K., Yabe, S., Ide, S., 2014. Regional and global variations in the temporal clustering of tectonic tremor activity, Earth Planets Space 66, 66. doi.org/10.1186/1880-5981-66-66.

Kagan,Y.Y., 1997. Are earthquakes predictable? Geophysical Journal International 131, 505–525. doi.org/10.1111/j.1365-246X.1997.tb06595.x.

Katsumata, A., Kamaya, N., 2003. Low-frequency continuous tremor around the Moho discontinuity away from volcanoes in the southwest Japan. Geophysical Research Letters 30(1), 1020. doi:10.1029/2002GL0159812.

Kondepudi, D., Prigogine, I., 1998. Modern Thermodynamics: From Heat Engines to Dissipative Structures: Second Edition. John Wiley and Sons, Oxford, 506 pp.

Ma J., Guo Y, Sherman S. I. Accelerated synergism along a fault: A possible indicator for an impending major earthquake // Geodynamics and Tectonophysics. 2014. Vol. 5, No. 2. P. 387–399. doi.org/10.5800/GT-2014-5-2-0134.

Ma J., Sherman S.I., Guo Y.S. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a bending fault // Science China Earth Sciences. 2012. V. 55. P. 869–881. doi.org/10.1007/s11430-012-4423-2.

Myachkin, V. I., Kostrov, B. V., Sobolev, G. A., Shamina, O. G., 1975. Fundamentals of the physics of earthquake foci and fore-runners. In M.A. Sadovsky (Ed.), Physics of Earthquake Focus. Nauka, Moscow, 6–29 (in Russian).

Nadeau, R. M., Dolenc, D., 2005. Nonvolcanic tremors deep beneath the San Andreas Fault. Science 307, 389. doi.org/10.1126/science.1107142.

Obara, K., Hirose, H., 2006. Non‐volcanic deep low‐frequency tremors accompanying slow slips in the southwest Japan subduction zone. Tectonophysics 417(1–2), 33–51. doi.org/10.1016/j.tecto.2005.04.013.

Olami, Z, Feder, H. J. S, Christensen, K., 1992. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Physical Review Letters 68, 1244–1247. doi.org/10.1103/PhysRevLett.68.1244.

Panteleev, I., Plekhov, O., Pankov, I., Evseev, A., Naimark, O., Asanov, V., 2014. Experimental investigation of the spatio-temporal localization of deformation and damage in sylvinite specimens under uniaxial tension. Engineering Fracture Mechanics 129, 38–44. doi.org/10.1016/j.engfracmech.2014.08.004.

Peng, Z., Gomberg, J., 2010. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nature Geoscience 3(9), 599–607. doi.org/10.1038/ngeo940.

Pushcharovsky, Yu. M., 1993. Non-linear geodynamics (author's credo). Geotectonics 1, 3–7. Rogers, G., Dragert, H., 2003. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300(5627), 1942–1943. doi.org/10.1126/science.1084783.

Rosenau, M., J. Lohrmann, O. Oncken, 2009. Shocks in a box: An analogue model of subduction earthquake cycles with application toseismotectonic forearc evolution. J. Geophys. Res. 114, B01409. doi.org/10.1029/2008JB005665.

Rosenau, M., Corbi, F., Dominguez, S., 2017. Analogue earthquakes and seismic cycles: experimental modelling across timescales. Solid Earth 8, 597–635. doi.org/10.5194/se-8-597-2017.

Sadovsky, M. A., Balhovitinov, L. G., Pisarenko V. F., 1982. Seismic processes in geophysical media. Izvestiya Physics of the Earth 12, 3–18.

Sekine, S., Hirose, H., Obara, K., 2010. Along-strike variations in short-term slow slip events in the southwest Japan subduction zone. Journal of Geophisical Research 115, B00A27. doi.org/10.1029/2008JB006059.

Shelly, D.R., Beroza, G.C., Ide, S., 2007. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446(7133), 305–307. doi.org/10.1038/nature05666.

Seminsky, K.Zh., 1986. Structural and Mechanical Properties of Clayey Pastes as Model Material in Tectonic Experiments. Institute of the Earth’s Crust, Siberian Branch of the USSR Academy of Sciences, Irkutsk, 130 pp. VINITI 13.08.86. 5762–В86 (in Russian)

Seminsky, K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO, Novosibirsk, 244 pp. (in Russian)

Seminsky, K.Zh., 2008. Hierarchy of the zone-block structure of the lithosphere of Central and East Asia: the ratio between the size of fault zones and blocks at different levels of the hierarchy. Russian Geology and Geophysics 49(10), 1018–1030. doi.org/10.1016/j.rgg.2007.11.017.

Sherman, S.I., 1984. Physical experiment in tectonics and the theory of similarity. Russian Geology and Geophysics 3, 8–18. (in Russian)

Sherman, S.I., Seminsky, K.Zh., Bornyakov, S.А., et al., 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Novosibirsk, 261 pp.

Sutton, M.A., Orteu, J.J., Schreier, H.W., 2009. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications. Springer. 316 pp.

Stoyanov, S.S., 1977. Fault Zone Formation Mechanisms. Nedra, Moscow, 114 pp. (in Russian) Tchalenko, J.S., 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin 81(6), 1625–1640. doi.org/10.1130/0016-7606(1970)81[1625:SBSZOD]2.0.CO;2.

Tocher, D., 1958. Earthquake energy and ground breakage. Bulletin of the Seismological Society of America 48(2), 147–153. doi.org/10.1785/BSSA0480020147.

Turcotte, D. L., 1997. Fractals and Chaos in Geology and Geophysics, Cambridge Univ. Press, Cambridge, U. K. 410 pp. doi.org/10.1017/CBO9781139174695.

Wei, M., Kaneko, Y., Liu, Y., McGuire, J.J., 2013. Episodic fault creep events in California controlled by shallow frictional heterogeneity. Nature Geoscience 6, 1–5. doi.org/10.1038/ngeo1835.

Weijermars, R., Schmeling, H., 1986. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity), Phys. Earth Planet. Inter. 43(4), 316–330. doi.org/10.1016/0031-9201(86)90021-X.

Wilcox, R.E., Harding, T.P., Seely, D.R., 1973. Basic wrench tectonics. AAPG Bulletin 57, 74–96.

Zubarev, D. N., Morozov, V. G., Repke, G., 2002. Statistical Mechanics of Non-Equilibrium Processes. Fizmatlit, Moscow, 431 pp. (in Russian)

Zhuo, Y.Q., Guo, Y.S., Ji, Y.T., et al., 2013. Slip synergism of planar strike-slip fault during meta-instable state: Experimental research based on digital image correlation analysis. Science China Earth Sciences 56, 1881–1887. doi.org/10.1007/s11430-013-4623-4.



For citation


Bornyakov S.A. Stages of Stick-Slip Preparation on Precut Faults in Laboratory Models, and Verification of the Stages in Nature [Electronic resource] / S.A. Bornyakov, Y. Guo, I.A. Panteleev, Y-Q Zhuo, A.A. Dobrynina, V.A. Sankov, D.V. Salko, A.N. Shagun, A.A. Karimova // Geology and Environment.— 2023.— V. 3, No. 1.— P. 52–71. DOI 10.26516/2541-9641.2023.1.52.




Full text (English) | In here |

© 2021-2023   Scientific electronic peer-reviewed journal "Geology and Environment". All rights reserved.
XHTML CSS