S.V. Rasskazov1,2, S.V. Snopkov2,3, S.A. Bornyakov1
1Institute of the Earth's Crust SB RAS, Irkutsk, Russia
2Irkutsk State University, Faculty of Geology, Irkutsk, Russia
3Siberian School of Geosciences, Irkutsk National Research Technical University, Irkutsk, Russia
Rasskazov Sergei Vasilievich,
doctor of geological and mineralogical sciences, professor,
664003 Irkutsk, Lenin str., 3,
Irkutsk State University, Faculty of Geology,
Head of the Department of Dynamic Geology,
664033 Irkutsk, Lermontov str., 128,
Institute of the Earth's Crust SB RAS,
Head of the Laboratory of Isotopy and Geochronology,
tel.: (3952) 51–16–59,
email: rassk@crust.irk.ru.
Snopkov Sergey Viktorovich,
сandidate of Geological and Mineralogical Sciences,
664003 Irkutsk, Lenin str., 3,
Irkutsk State University, Faculty of Geology,
Assistant Professor,
664074, Irkutsk, Kurchatov str., 3,
Siberian School of Geosciences, Irkutsk National Research Technical University,
Leading Researcher,
еmail: snopkov_serg@mail.ru.
Bornyakov Sergey Alexandrovich,
сandidate of geological and mineralogical sciences,
664033 Irkutsk, Lermontov str., 128,
Institute of the Earth's Crust SB RAS,
Leading Researcher,
email: bornyak@crust.irk.ru.
Abstract. Timing of earthquakes is determined by an entry of active faults in the central part of the Baikal Rift System into a metastable (preseismic) state during the development of a complete seismogeodynamic cycle. Based on a role of fluid flows as possible triggers for seismogenic deformations, in determining earthquake timing of the Baikal-Khubsugul reactivation of 2020–2023, we take into account: 1) decreasing atmospheric pressure, 2) matching–mismatching mode of oxidation–redox potential (ORP) in different stations, and 3) overall ORP decreasing in groundwaters from monitoring stations of the Kultuk polygon.
Keywords: groundwater, monitoring, oxidation–redox potential, earthquake, Baikal.
P. 181–201
Chebykin E.P., Goldberg E.L., Kulikova N.S., Zhuchenko N.A., Stepanova O.G., Malopevnaya Yu.A. Method for determining the isotopic composition of authigenic uranium in the bottom sediments of Lake Baikal // Geology and Geophysics. 2007. V. 48, No. 6. P. 604–616. (in Russian)
Chebykin E.P., Ilyasova A.M., Snopkov S.V., Rasskazov S.V. Groundwater mercury signals from the Kultuk polygon during the preparation and implementation of the Baikal-Khubsugul seismic activation in 2020–2021 // Geology and Environment. 2022. V. 2, No. 1. P. 7–9. https://doi.org/10.26516/2541-9641.2022.1.7 (in Russian)
Chebykin E.P., Rasskazov S.V., Vodneva E.N., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Seminsky A.K., Snopkov S.V. First results of 234U/238U monitoring in waters from active faults on the western coast of Southern Baikal // Reports of the Academy of Sciences. 2015. V. 460, No. 4. P. 464–467. (in Russian)
Chebykin E.P., Sorokovikova L.M., Tomberg I.V., Vodneva E.N., Rasskazov S.V., Khodger T.V., Grachev M.A. The current state of the waters of the Selenga river on the territory of Russia on the main components and trace elements // Chemistry for sustainable development. 2012. V. 20, No. 5. P. 613–631. (in Russian)
Chipizubov A.V., Smekalin O.P. Paleoseismodislocations and related paleoearthquakes at the Main Sayan Fault zone // Russian Geology and Geophysics. 1999. V. 40, No. 6. P. 936–937. (in Russian)
Ilyasova A.M., Snopkov S.V. Coseismic variations of thermophilic element Si in groundwaters from the southwestern coast of Lake Baikal // Geology and Environment. 2023. Vol. 3, No. 1. P. 72–105. https://doi.org/10.26516/2541-9641.2023.1.72 (in Russian)
Map of earthquake epicenters. Irkutsk: Baikal Branch of the Federal Research Center Unified Geophysical Service of the Russian Academy of Sciences, 2023. http://www.seis-bykl.ru (in Russian)
Krainov S.R., Ryzhenko B.N., Shvets V.M. Geochemistry of groundwater. Theoretical, applied and environmental aspects. Second edition, supplemented // Moscow: TsentrLitNefteGaz, 2012. 672 p. (in Russian)
Rasskazov S.V., Chebykin E.P., Ilyasova А.М., Vodneva Е.N., Chuvashova I.S., Bornyakov S.А., Seminsky А.К., Snopkov S.V., Chechel'nitsky V.V., Gileva N.А. Creating the Kultuk polygon for earthquake prediction: variations of (234U/238U) and 87Sr/86Sr in groundwater from active faults at the western shore of Lake Baikal // Geodynamics & Tectonophysics. 2015. V. 6, No. 4. P. 519–553. doi:10.5800/GT-2015-6-4-0192. (in Russian)
Rebetsky Yu.L. The current state of the theories of earthquake prediction. Results of assessment of natural stresses and a new model of the earthquake source // O.Yu. Schmidt Institute of Physics of the Earth RAS, 2023. 37 p. https://www.geokniga.org/books/6034 (in Russian)
Ruzhich V.V. On the medium-term forecast of earthquakes in the Baikal region // Geophysical research in Eastern Siberia at the turn of the XXI century. Novosibirsk: Nauka, SIF, 1996. P. 143–147.
Ruzhich V.V. Seismotectonic Destruction of the Earth's Crust in the Baikal Rift Zone // Publishing House of SB RAS, Novosibirsk, 1997. 144 p. (in Russian)
Seminsky K.Zh., Bornyakov S.A., Dobrynina A.A., Radziminovich N.A., Rasskazov S.V., Sankov V.A., Mialle P., Bobrov A.A., Ilyasova A M., Salko D.V., Sankov A.V., Seminsky A.K., Chebykin E.P., Shagun A.N., German V.I., Tubanov Ts.A., Ulzibat M. Earthquake Bystraya in the South Baikal region (09.21.2020, Mw = 5.4): main parameters, signs of preparation, and accompanying effects // Russian Geology and Geophysics. 2020. V. 6, No. 5. P. 727–743. (in Russian)
Sobolev G.A. Fundamentals of Earthquake Prediction // Nauka, Moscow, 1993. 310 p. (in Russian)
Allen R.M., Melgar D. Earthquake early warning: advances, scientific challenges, and societal needs // Ann. Rev. Earth Planet. Sci. 2019. V. 47. P. 361–388. doi: 10.1146/annurev-earth-053018-060457
Auclair S., Gehl P., Delatre M. Needs and opportunities for seismic early warning prior to aftershocks for search and rescue teams: an indepth analysis of practitioners’ perceptions // Int. J. Disaster Risk Reduct. 2021. V. 65. P. 102545. doi: 10.1016/j.ijdrr.2021.102545
Basher R., Page J., Woo J., Davies M.L., Synolakis C.E., Farnsworth, A.F., et al. Global early warning systems for natural hazards: systematic and people-centred // Philos. Transac. A Math. Phys. Eng. Sci. 2006. V. 364. P. 2167–2182. doi: 10.1098/rsta.2006.1819
Becker J.S., Potter S.H., Prasanna R., Tan M.L., Payne B.A., Holden C., et al. Scoping the potential for earthquake early warning in Aotearoa New Zealand: a sectoral analysis of perceived benefits and challenges // Int. J. Disaster Risk Reduct. 2020a. V. 51. P. 1–16. doi: 10.1016/j.ijdrr.2020.101765
Bindi D., Boxberger T., Orunbaev S., Pilz M., Stankiewicz J., Pittore M., et al. On-site early-warning system for Bishkek (Kyrgyzstan) // Ann. Geophysics. 2015. V. 58. P. 1–8. doi: 10.4401/ag-6664
Böse M., Heaton T.H. Probabilistic prediction of rupture length, slip and seismic ground motions for an ongoing rupture: implications for early warning for large earthquakes // Geophys. J. Int. 2010. V. 183. P. 1014–1030. doi: 10.1111/j.1365-246X.2010.04774.x
Bracale M., Colombelli S., Elia L., Karakostas V., Zollo A. Design, implementation and testing of a network-based earthquake early warning system in Greece // Front. Earth Sci. 2021. V. 9. P. 667160. doi: 10.3389/feart.2021.667160 Devi S., Sandeep, Kumar P., Monika, Joshi A. Modelling of 2016 Kumamoto earthquake by integrating site effect in semi-empirical technique // Natural Hazards. 2022. Vol. 111. P. 1931–1950. https://doi.org/10.1007/s11069-021-05123-8
Fujinawa Y., Noda Y. Japan’s earthquake early warning system on 11 March 2011: performance, shortcomings, and changes // Earthquake Spectra. 2013. V. 29. P. 3–25. doi: 10.1193/1.4000127
Goltz J.D., Flores P.J. Real-time earthquake early warning and public policy: a report on Mexico City’s sistema de alerta sismica // Seismol. Res. Lett. 1997. V. 68. P. 727–733. doi: 10.1785/gssrl.68.5.727
Guo K., Wen R., Lu D. Survey and analysis of social effects of earthquake early warning system’s application // J Nat. Disast. 2012. V. 21. P. 108–115.
Iervolino I., Manfredi G., Cosenza E. Earthquake early warning and engineering application prospects // Earthquake Early Warning Systems. 2007. P. 233–247. doi: 10.1007/978-3-540-72241-0_12
Freund F. Earthquake forewarning – A multidisciplinary challenge from the ground up to space // Acta Geophysica. 2013. V. 61, no. 4. P. 775–807. DOI: 10.2478/s11600-013-0130-4
Kamigaichi O., Saito M., Doi K., Matsumori T., Tsukada S., Takeda K., et al. Earthquake early warning in Japan: Warning the general public and future prospects // Seismol. Res. Lett. 2009. V. 80. P. 717–726. doi: 10.1785/gssrl.80.5.717
Kodera Y., Hayashimoto N., Moriwaki K., Noguchi K., Saito J., Akutagawa J., et al. First-year performance of a nationwide earthquake early warning system using a wavefield-based ground-motion prediction algorithm in Japan // Seismol. Res. Lett. 2020. V. 91. P. 826–834. doi: 10.1785/0220190263
Kohler M.D., Cochran E.S., Given D., Guiwits S., Neuhauser D., Henson I., et al. Earthquake early warning shakealert system: west coast wide production prototype // Seismol. Res. Lett. 2018. V. 89. P. 99–107. doi: 10.1785/0220170140
Li J., Böse M., Feng Y. and Yang C. Real-time characterization of finite rupture and its implication for earthquake early warning: Application of FinDer to existing and planned stations in Southwest China // Front. Earth Sci. 2021. V. 9. P. 699560. doi: 10.3389/feart.2021.699560
Massin F., Clinton J. and Böse M. Status of earthquake early warning in Switzerland // Front. Earth Sci. 2021. V. 9. P. 707654. doi: 10.3389/feart.2021.707654
Minson S.E., Cochran E.S., Wu S., Noda S. A Framework for evaluating earthquake early warning for an infrastructure network: An idealized case study of a Northern California rail system // Front. Earth Sci. 2021. V. 9. P. 620467. doi: 10.3389/feart.2021.620467
Nanjo K.Z., Izutsu J., Orihara Y., Furuse N., Togo S., Nitta H., Okada T., Tanaka R., Kamogawa M., Nagao T. Seismicity prior to the 2016 Kumamoto earthquakes // Earth, Planets, and Space. 2016. Vol. 68. P. 187. DOI 10.1186/s40623-016-0558-2
Nanjo K.Z., Izutsu J., Orihara Y., Kamogawa M. Changes in seismicity pattern due to the 2016 Kumamoto earthquake sequence and implications for improving the foreshock traffi-light system // Tectonophysics. 2022. Vol. 822. P. 229175. doi.org/10.1016/j.tecto.2021.229175
Peng C., Jiang P., Ma Q., Wu P., Su J., Zheng Y., Yang J. Performance evaluation of an earthquake early warning system in the 2019–2020 M6.0 Changning, Sichuan, China, seismic sequence // Front. Earth Sci. 2021. V. 9. P. 699941. doi: 10.3389/feart.2021.699941
Rasskazov S.V., Chebykin E.P., Ilyasova A.M., Snopkov S.V., Bornyakov S.A., Chuvashova I.S. Change of seismic hazard levels in complete 12-year seismogeodynamic cycle of the South Baikal Basin: Results of hydroisotopic (234U/238U) monitoring // Geology and Environment. 2022. V. 2, No. 2. P. 7–21. doi.org/10.26516/2541-9641.2022.2.7
Rasskazov S., Chuvashova I., Yasnygina T., Saranina E., Gerasimov N., Ailow Y., Sun Y.-M. Tectonic generation of pseudotachylytes and volcanic rocks: Deep-seated magma sources of crust-mantle transition in the Baikal Rift System, Southern Siberia // Minerals. 2021. V. 11, No. 5. P. 487.
Rasskazov S., Ilyasova A., Bornyakov S., Chuvashova I., Chebykin E. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia // Front. Earth Sci. 2020. V. 14, No. 4. P. 711–737. doi.org/10.1007/s11707-020-0821-5
Sarlis N.V., Skordas E.S., Varotsos P.A., Nagao T., Kamogawa M., Uyeda S. Spatiotemporal variations of seismicity before major earthquakes in the Japanese area and their relation with the epicentral locations // Proceedings of the National Academy of Sciences. 2014. P. 1–4. DOI: 10.1073/pnas.1422893112
Schlesinger A., Kukovica J., Rosenberger A., Heesemann M., Pirenne B., Robinson J., Morley M. An earthquake early warning system for Southwestern British Columbia // Front. Earth Sci. 2021. V. 9. P. 684084. doi: 10.3389/feart.2021.684084
Sobolev G.A. Seismicity dynamics and earthquake predictability // Nat. Hazards Earth Syst. Sci. 2011. V. 11. P. 445–458. www.nat-hazards-earth-syst-sci.net/11/445/2011/ doi:10.5194/nhess-11-445-2011
Stefa´nsson R. Advances in earthquake prediction research and risk mitigation // Springer-Verlag, Berlin, Heidelberg, 2011. 265 p.
Strauch W., Talavera E., Tenorio V., Ramírez J., Argüello G., Herrera M., et al. Toward an earthquake and tsunami monitoring and early warning system for Nicaragua and central America // Seismol. Res. Lett. 2018. V. 89. P. 399–406. doi: 10.1785/0220170193
Suárez G. The seismic early warning system of Mexico (SASMEX): A Retrospective view and future challenges // Front. Earth Sci. 2022. V. 10. P. 827236. doi: 10.3389/feart.2022.827236
Suzuki K. Creation of a next-generation Early Warning Information System for effective earthquake and tsunami crisis response navigators // Problems of geodynamics and geoecology of intracontinental orogens. VIII International Symposium, June 28 – July 2, Bishkek. 2021.
Tan M.L., Becker J.S., Stock K., Prasanna R., Brown A., Kenney C., Cui A., Lambie E. Understanding the social aspects of earthquake early warning: A literature review // Front. Commun. 2022. V. 7. P. 939242. doi: 10.3389/fcomm.2022.939242
Tikhonov I.N., Rodkin M.V. Current state of art in earthquake prediction, typical precursors and experience in earthquake forecasting at Sakhalin Island and surrounding areas, Earthquake Research and Analysis – Statistical Studies, Observations and Planning // Dr Sebastiano D'Amico (Ed.). ISBN: 978-953-51-0134-5, InTech, 2012. P. 73–78.
Valbonesi C. Between necessity and legal responsibility: the development of EEWS in Italy and its international framework // Front. Earth Sci. 2021. V. 9. P. 685153. doi: 10.3389/feart.2021.685153
Velazquez O., Pescaroli G., Cremen G., Galasso C. A Review of the Technical and Socio-Organizational Components of Earthquake Early Warning Systems // Front. Earth Sci. 2020. V. 8. P. 533498. doi: 10.3389/feart.2020.533498
Zavyalov A.D. Medium-term prediction of earthquakes from a set of criteria: Principles, methods, and implementation // Russian Journal of Earth Sciences. 2005. V. 7, No. 1. P. 51–73.
Zhang M., Qiao X., Seyler B.C., Di B., Wang Y., Tang Y. Brief communication: Effective earthquake early warning systems: appropriate messaging and public awareness roles // Nat. Hazards Earth Syst. Sci. 2021. V. 21. P. 3243–3250. https://doi.org/10.5194/nhess-21-3243-2021
Zhu J., Li S., Song J., Wang Y. Magnitude estimation for earthquake early warning using a Deep Convolutional Neural Network // Front. Earth Sci. 2021. V. 9. P. 653226. doi: 10.3389/feart.2021.653226
Zuccolo E., Cremen G., Galasso C. Comparing the performance of regional earthquake early warning algorithms in Europe // Front. Earth Sci. 2021. V. 9. P. 686272. doi: 10.3389/feart.2021.686272
Rasskazov S.V., Snopkov S.V., Bornyakov S.A. Relationship between timing of earthquakes of the Baikal-Khubsugul reactivation and oxidation–redox potential in groundwaters from the Kultuk polygon [Electronic resource] / S.V. Rasskazov, S.V. Snopkov, S.A. Bornyakov // Geology and Environment.— 2023.— V. 3, No. 1.— P. 181–201.DOI 10.26516/2541-9641.2023.1.181.