Кнопка
2024. Vol. 4, No. 1

Bibliography
UDC 523.3+51
https://doi.org/10.26516/2541-9641.2024.1.7

Generation of the Global Asian Isotope Thermal Anomaly (ASITA) in the incipient Earth-Moon System: Gas-dust Cloud Fragmentation versus Mega-impact



Authors


S.V. Rasskazov1,2, I.S. Chuvashova1,2,

1Institute of the Earth's Crust SB RAS, Irkutsk, Russia

2Irkutsk State University, Irkutsk, Russia


Number of views of the article:Visitor counter Counter.CO.KZ


About the Authors


Rasskazov Sergei Vasilievich,

doctor of geological and mineralogical sciences, professor,

664025 Irkutsk, st. Lenina, 3,

Irkutsk State University, Faculty of Geology,

Head of Dynamic Geology Chair,

664033 Irkutsk, st. Lermontova, 128,

Institute of the Earth's Crust SB RAS,

Head of the Laboratory for Isotopic and Geochronological Studies,

tel.: (3952) 51–16–59,

email: rassk@crust.irk.ru.

Chuvashova Irina Sergeevna,

candidate of geological and mineralogical sciences,

Senior Researcher,

664025 Irkutsk, st. Lenina, 3,

Irkutsk State University, Faculty of Geology,

Associate Professor of the Dynamic Geology chair,

664033 Irkutsk, st. Lermontova, 128,

Institute of the Earth's Crust SB RAS,

Senior Researcher,

tel.: (3952) 51–16–59,

email: chuvashova@crust.irk.ru.



Abstract. A review of lunar studies is given that indicate the isotope crisis of the Earth mega-impact hypothesis and the removal of emerging contradictions by a competing model of the origin of the Earth-Moon binary system from a gas-dust cloud. The simultaneous solidification of the magma ocean of the Moon with the solidification of the magma ocean in the global ASITA heterogeneity of the Earth 4.54–4.44 billion years ago is substantiated. From the model of the Earth–Moon binary system, the solidification of the ASITA magma ocean is assumed to precede the solidification of the rest of the Earth. It is concluded that the Earth's crust consolidated at different times after the solidification of the magma ocean: in ASITA – 4.31 billion years ago and in the rest of the Earth – with a delay of up to 3.82 billion years ago.


Keywords: early Earth, Moon, mega impact, gas and dust cloud, magma ocean, geochemistry.


P. 7–41



References


Albarède F. Volatile accretion history of the terrestrial planets and dynamic implications // Nature. 2009. Vol. 461. P. 1227–1233.

Albarède F., Ballhaus C., Blichert-Toft J., Lee C-T., Marty B., Moynier F., Yin, Q-Z. Asteroidal impacts and the origin of terrestrial and lunar volatiles // Icarus. 2013. Vol. 222. P. 44–52. doi:10.1016/J.ICARUS.2012.10.026.

Allègre C.J., Manhes G., Göpel C. The Age of the Earth // Geochim. Cosmochim. Acta. 1995. Vol. 59. P. 1445–1456.

Allègre C.J., Manhes G., Göpel C. The major differentiation of the Earth at 4.45 Ga // Earth Planet. Sci. Lett. 2008. Vol. 267. P. 368–398.

Anders E., Grevesse N. Abundances of the elements: meteoritic and Solar // Geochim. Cosmochim. Acta. 1989. Vol. 53. P. 197–214.

Barboni M., Boehnke P., Keller B., Kohl I.E., Schoene B., Young E.D., McKeegan K.D. Early formation of the Moon 4.51 billion years ago // Science Advances. 2017. Vol. 3. P. e1602365.

Basu A.R.; Junwen W.; Wankang H.; Guanghong X.; Tatsumoto M. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs // Earth Planet. Sci. Letters. 1991. Vol. 105. P. 149–169.

Belichenko V.G. et al. Geodynamic map of the Paleoasian Ocean. Eastern segment // Geology and Geophysics. 1994. Vol. 35. No. 7–8. P. 29–40.

Belichenko V.G. et al. Barguzin microcontinent (Baikal mountain region): to the problem of isolation // Geology and Geophysics. 2006. Vol. 47, No. 10. P. 1049–1059.

Borg L.E. et al. Mechanisms for incompatible-element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032 // Geochimica et Cosmochimica Acta. 2009. Vol. 73. P. 3963–3980.

Cameron A.G.W., Ward W. The origin of the Moon // Proc. 7th Lunar Sci. Conf., 1976. P. 120–122

Carlson R.W., Lugmair G.W. The age of ferroan anorthosite 60025: oldest crust on a young Moon? // Earth Planet. Sci. Lett. 1988. Vol. 90. P. 119–130. doi:10.1016/0012-821X(88)90095-7

Castillo P. The Dupal anomaly as a trace of the upwelling lower mantle // Nature. 1988. Vol. 336. P. 667–670.

Che X., Nemchin A., Liu D., Long T., Wang C., Norman M.D., Joy K.H., Tartese R., Head J., Jolliff B., Snape J.F., Nea C.R., Whitehouse M.J., Crow C., Benedix G., Jourdan F., Yang Z., Yang C., Liu J., Xie S., Bao Z., Fan R., Li D., Li Z., Webb S.G. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5 // Science. 2021. 10.1126/science.abl7957.

Chuvashova I.S., Rasskazov S.V., Yasnygina T.A., Saranina E.V. Radiogenic isotope studies of Late Cenozoic volcanic rocks from Asia and North America: Sources of volcanism of global, regional, and local significance // Geology and Environment. 2022. Vol. 2, No. 3. P. 64–102. DOI 10.26516/2541-9641.2022.3.64].

Connelly J.N., Bizzarro M. Lead isotope evidence for a young formation age of the Earth–Moon system // Earth and Planetary Science Letters. 2016. Vol. 452. P. 36–43. http://dx.doi.org/10.1016/j.epsl.2016.07.010

Connelly J.N., Bizzarro M., Krot A.N., Nordlund Å., Wielandt D., Ivanova M.A. The Absolute chronology and thermal processing of solids in the Solar protoplanetary disk // Science. 2012. Vol. 338. P. 651–655.

Davies G.F. Dynamic Earth: Plates, Plumes and Mantle Convection / G. F. Davies. Cambridge: Cambridge University Press, 1999. 458 p.

Didenko A.N. et al. Geodynamics of the Paleozoic oceans of Central Asia // Geology and Geophysics. 1994. No. 7–8. P. 59–75.

Doe B.R. Lead isotopes; Springer-Verlag, Berlin, 1970. 137 p.

Galimov E.M. Origin of the Moon // Earth and Universe. 2005. No. 6. Review article: http://ziv.telescopes.ru/rubric/astronomy/index.html?pub=9 Galimov E.M. Analysis of isotope systems (Hf-W, Rb-Sr, J-Pu-Xe, U-Pb) in relation to the problem of planet formation using the example of the Earth-Moon system. Problems of the origin and evolution of the biosphere (Ed. Galimov E.M.) Moscow: KRASAND, 2013. P. 47–59.

Galimov E.M Formation of the Moon and the Earth from a Common Supraplanetary Gas–Dust Cloud (Lecture Presented at the XIX All-Russia Symposium on Isotope Geochemistry on November 16, 2010) // Geochemistry International, 2011. Vol. 49, No. 6. P. 537–554. DOI: 10.1134/S0016702911060048

Galimov E.M., Krivtsov A.M. Origin of the Earth-Moon system // J. Earth Syst. Sci. 2005. Vol. 114, № 6. P. 593–600.

Galimov E.M., Krivtsov A.M., Zabrodin A.V., Legkostupov M.S., Eneev T.M., Sidorov Yu.I. Dynamic model of the formation of the Earth–Moon system // Geochemistry. 2005. No. 11. P. 1139–1150.

Gorkavyi N. Origin of the Moon and lunar water // Earth and Planetary Science. 2023. Vol. 02, Issue 02. P. 86–99. DOI: https://doi.org/10.36956/eps.v2i2.940.

Elardo S.M. et al. The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205 // Meteoritics & Planetary Science. 2014. Vol. 49. P. 261–291.

Fernandes V.A., Burgess R., Turner G. 40Ar–39Ar chronology of lunar meteorites Northwest Africa 032 and 773 // Meteo. Planet. Sci. 2003. Vol. 38. P. 555–564.

Fischer R.A., Zube N.G., Nimmo F. The origin of the Moon’s Earth-like tungsten isotopic composition from dynamical and geochemical modeling // Nature Communications. 2021. Vol. 12. P. 35. https://doi.org/10.1038/s41467-020-20266-1

Jackson M.G.; Becker T.W.; Konter J.G. Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints // Earth Planet. Sci. Lett. 2018. Vol. 484. P. 154 –167.

Jacobsen S.B., Ranen M.C., Petaev M.I., Remo J.L., O’Connel J.O., Sasselov D.D. Isotopes as clues to the origin and earliest differentiation history of the Earth // Philos. Trans. Royal Soc. 2008. Vol. A 366. P. 4129–4162.

Jones H.J., Palme H. Geochemical constraints on the origin of the Earth and Moon // Origin of the Earth and Moon (eds) Canup R M and Righter K Univ. Arizona Press: Tucson, 2000. P. 197–216.

Halliday A.N. Hf-W chronometry and inner solar system accretion rates // Space Sci. Rev. 2000. Vol. 92. P. 355–370.

Halliday A.N. Mixing, volatile loss and compositional chance during impact-driven accretion of the Earth // Nature. 2004. Vol. 427. P. 505–509.

Halliday A.N. A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth // Phil. Trans. R. Soc. A. 2008. Vol. 366. P. 4163–4181. doi:10.1098/rsta.2008.0209

Halliday A.N., Canup R.M. The accretion of planet Earth // Nature Reviews Earth & Environment. 2023. Vol. 4. P. 19–35. https://doi.org/10.1038/s43017-022-00370-0

Halliday A.N., Wood B.J. The composition and major reservoirs of the Earth around the time of the Moon-forming giant impact // Treatise on Geophysics: Evolution of the Earth. 2007. Vol. 9. Ed. D. Stevenson. P. 13–50. Chapter 9.02.

Hanan B.B., Tilton G.R. 60025: relict of primitive lunar crust? // Earth Planet. Sci. Lett. 1987. Vol. 84. P. 15–21. doi:10.1016/0012-821X(87)90171-3

Hart S.R.; Gaetani G.A. Mantle paradoxes: the sulfide solution // Contrib. Mineral. Petrol. 2006. Vol. 152. P. 295–308.

Hartmann W.K., Davis D.R. Satellite-sized planets and lunar origin // Icarus. 1975. Vol. 24. P. 504–515.

Hiesinger H., Head III.J.W., Wolf U., Jaumann R., Neukum G. Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements // J. Geophys. Res. Planets. 2010. Vol. 115. P. E03003.

Homrighausen S.; Hoernle K.; Hauff F.; Geldmacher J.; Wartho J.-A.; Van Den Bogaard P.; Garbe-Schönberg D. Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics // Earth-Science Reviews. 2018. Vol. 182. P. 85–101.

Hopkins M.D., Mojzsis S.J. A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons // Contributions to Mineralogy and Petrology. 2015. Vol. 169. P. 1–18.

Hunten D.M., Pepin R.O., Walker J.C.G. Mass fractionation in hydrodynamic escape // Icarus. 1987. Vol. 69. P. 532–549. Humayun M., Clayton R.N. Potassium isotope cosmochemistry: genetic implications of volatile element depletion // Geochim. Cosmochim Acta. 1995. V. 59. P. 2131–2148.

Ilyin A.V. About the Tuva-Mongolian massif // Materials on regional geology of Africa and foreign Asia. Moscow: Nedra, 1971. P. 67–73. (Proceedings of the Scientific Research Institute "Zarubezhgeology"; issue 22).

Kemp A.I.S., Wilde S.A., Hawkesworth C.J., Coath C.D., Nemchin A., Pidgeon R.T., Vervoort J.D., DuFrane S.A. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons // Earth Planet. Sci. Lett. 2010. Vol. 296. P. 45–56.

Kleine T., Walker R.J. Tungsten isotopes in planets // Annu. Rev. Earth Planet. Sci. 2017. Vol. 45. P. 389–417. DOI: 10.1146/annurev-earth-063016-020037

Kleine T., Munker C., Mezger K., Palme H. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry // Nature. 2002. Vol. 418. P. 952–955.

Kleine T., Mezger K., Palme H., Münker C. The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion // Earth Planet. Sci. Lett. 2004. V. 228. P. 109–123.

Lammer H.,·Brasser R., Johansen A.,·Scherf M., Leitzinger M. Formation of Venus, Earth and Mars: Constrained by isotopes // Space Sci. Rev. 2021. Vol. 217. P. 7. https://doi.org/10.1007/s11214-020-00778-4. Le Pichon X., Şengör A.M.C., İmren C. Pangea and the lower mantle // Tectonics. Vol. 38. doi: 10.1029/2018TC005445

Levsky L.K., Stolbov N.M., Bogomolov E.S. et al. Sr-Nd-Pb isotope systems of basalts of the Franz Josef Land archipelago // Geochemistry. 2006. No. 4. P. 365–376.

Li Q-L., Zhou Q., Liu Y., Xiao Z., Lin Y., Li J-H., Ma H-X., Tang G-Q., Guo S., Tang X., Yuan J-Y., Li J., Wu F-Y., Ouyang Z., Li C., Li X-H. Two billion-year-old volcanism on the Moon from Chang’E-5 basalts // Nature. 2021. https://doi.org/10.1038/s41586-021-04100-2

Lustrino M.; Wilson M. The circum-Mediterranean anorogenic Cenozoic igneous province // Earth-Science Reviews. 2007. V. 81. P. 1–65.

Marov M.Ya., Ipatov S.I. Formation of the Earth and Moon: the influence of small bodies // Geochemistry. 2021. Vol. 66, No. 11. P. 964–971. DOI: 10.31857/S0016752521110078

Maruyama S.; Santosh M.; Zhao D. Superplume, supercontinent, and postperovskite: Mantle dynamics and anti-plate tectonics on the core–mantle boundary // Gondwana Research 2007. Vol. 11. P. 7–37.

Melosh H.J. New approaches to the Moon’s isotopic crisis // Phil. Trans. R. Soc. 2014. Vol. A 372. P. 20130168.

Merle R.E. et al. Pb-Pb ages and initial Pb isotopic composition of lunar meteorites: NWA 773 clan, NWA 4734, and Dhofar 287 // Meteo. Planet. Sci. 2020. V. 55. P. 1808–1832.

Morota T. et al. Timing and characteristics of the latest mare eruption on the Moon // Earth Planet. Sci. Lett. 2011. Vol. 302. P. 255–266.

Neal C., Taylor L. Modeling of lunar basalt petrogenesis – Sr isotope evidence from Apollo 14 high-alumina basalts // Lunar and Planetary Science Conference Proceedings. 1990. Vol. 20. P. 101–108.

Nielsen S.G., Bekaert D.V., Auro M. Isotopic evidence for the formation of the Moon in a canonical giant impact // Nature Communications. 2021. Vol. 12. P. 1817. https://doi.org/10.1038/s41467-021-22155-7

Nimmo F., Kretke K., Ida S., Matsumura S., Kleine T. Transforming dust to planets // Space Sci. Rev. 2018. Vol. 214. P. 101. https://doi.org/10.1007/s11214-018-0533-2

Norman M.D., Borg L.E., Nyquist L.E., Bogard D.D. Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust // Meteorit. Planet. Sci. 2003. Vol. 38. P. 645–661.

Nyquist L. Lunar Rb–Sr chronology // Physics and Chemistry of the Earth. 1977. Vol. 10. P. 103–142.

Nyquist L.E., Shih C.Y. The isotopic record of lunar volcanism // Geochimica et Cosmochimica Acta. 1992. Vol. 56. P. 2213–2234.

Nyquist L. et al. Rb–Sr systematics for chemically defined Apollo 15 and 16 materials // Lunar and Planetary Science Conference Proceedings. 1973. Vol. 4. P. 1823.

Nyquist L.E. et al. 146Sm–142Nd formation interval for the lunar mantle // Geochimica et Cosmochimica Acta. 1995. Vol. 59. P. 2817–2837.

Podosek F.A., Ozima M. The Xenon age of the Earth // Origin of the Earth and Moon / Eds R.M. Canap and K. Righter, Univ. Arizona, 2000. P. 63–74.

Rasskazov, S.V.; Brandt, S.B.; Brandt, I.S. Radiogenic isotopes in geologic processes; Springer, 2010. 306 p.

Rasskazov S., Chuvashova I., Yasnygina T., Saranina E. Mantle evolution of Asia inferred from Pb isotopic signatures of sources for Late Phanerozoic volcanic rocks // Minerals. 2020. Vol. 10, No. 9. P. 739. doi:10.3390/min10090739

Ritsema J. Global seismic maps // Plates, plumes, and paradigms / Eds. G.R. Foulger et al., Geological Society of America, Boulder. 2005. P. 11–18.

Rudge J.F., Kleine T., Bourdon B. Broad bounds on Earth’s accretion and core formation constrained by geochemical models // Nat. Geosci. 2010. Vol. 3. P. 439–443.

Snape J.F. et al. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon // Earth Planet. Sci. Lett. 2016. Vol. 451. P. 149–158.

Snape J.F. et al. The timing of basaltic volcanism at the Apollo landing sites // Geochim.Cosmochim. Acta. 2019. Vol. 266. P. 29–53.

Stöffler D., Ryder G., Ivanov A.V., Artemieva N.A., Cintala M.J., Grieve R.A. Creating history and lunar chronology // Reviews in Mineralogy and Geochemistry. 2006. Vol. 60. P. 519–596.

Tian H-C., Wang H., Chen Y., Yang W., Zhou Q., Zhang C., Lin H-L., Huang C., Wu S-T., Jia L-H., Xu L., Zhang D., Li X-G., Chang R., Yang Y-H., Xie L-W., Zhang D-P., Zhang G-L., Yang S-H., Wu F-Y. Non-KREEP origin for Chang’E-5 basalts in the Procellarum KREEP Terrane // Nature. 2021. https://doi.org/10.1038/s41586-021-04119-5

Tveritinov Yu.I. et al. Forecasting gold mineralization in the south of Eastern Siberia and the Far East: geological and isotope-geochemical aspects. Irkutsk: Institute of the Earth's Crust SB RAS, 2006. 224 p.

Valley J.W. et al. A cool early Earth // Geology. 2002. Vol. 30. P. 351–354.

Vityazev A.V., Pechernikova G.V. Early differentiation of the Earth and the problem of lunar composition // Physics of the Earth. 1996. No. 6. P. 3–16.

Wood B.J., Halliday A.N. Cooling of the Earth and core formation after the giant impact // Nature. 2005. Vol. 437. P. 1345–1348. Yin Q., Jacobsen S.B. Does U–Pb date Earth’s core formation? // Nature. 2006. Vol. 444. P. E1.

Yu G., Jacobsen S.B. Fast accretion of the Earth with a late Moon-forming giant impact // Proc. Natl. Acad. Sci. 2011. Vol. 108. P. 17604.

Yuan Q., Li M., Desch S.J., Ko B., Deng H., Garnero E.J., Gabriel T.S.J., Kegerreis J.A., Miyazaki Y., Eke V., Asimow P.D. Moon-forming impactor as a source of Earth’s basal mantle anomalies // Nature. 2023. Vol. 623. P. 95–99. https://doi.org/10.1038/s41586-023-06589-1

Zahnle K., Arndt N., Cockell C., Halliday A.N., Nesbit E., Selsis F., Sleep N.H. Emergence of a habitable planet // Space Sci. Rev. 2007. Vol. 129. P. 35–78. doi:10.1007/s11214-007-9225-z

Zhou Y., Liu Y., Reinhardt C., Deng H. The core-merging giant impact in Earth’s accretion history and its implications // Acta Geochim. 2022. Vol. 41, No. 4. P. 553–567 https://doi.org/10.1007/s11631-021-00503-0

Zindler A.; Hart S.R. Chemical geodynamics // Annual Reviews of Earth and Planetary Science. 1986. Vol. 14. P. 493–571.



For citation


Rasskazov S.V., Chuvashova I.S. Generation of the Global Asian Isotope Thermal Anomaly (ASITA) in the incipient Earth-Moon System: Gas-dust Cloud Fragmentation versus Mega-impact DOI 10.26516/2541-9641.2024.1.7 // Geology and Environment : electronic scientific journal. 2024. V. 4, No. 1. P. 7–41.


Full article text (Russian)


Send a letter of feedback to S. Rasskazov


© 2021-2024   Scientific electronic peer-reviewed journal "Geology and Environment". All rights reserved.

[Back to previous page]