S.V. Rasskazov1,2, A.M. Ilyasova1, E.P. Chebykin1,3
1Institute of the Earth's Crust SB RAS, Irkutsk, Russia
2Irkutsk State University, Irkutsk, Russia
3Limnological Institute SB RAS, Irkutsk, Russia
Rasskazov Sergei Vasilievich,
doctor of geological and mineralogical sciences, professor,
664025, Irkutsk, Lenin st., 3,
Irkutsk State University, Faculty of Geology,
Head of Dynamic Geology Char,
664033, Irkutsk, Lermontov st., 128,
Institute of the Earth's Crust SB RAS,
Head of Laboratory for Isotopic and Geochronological Studies,
tel.: (3952) 51–16–59,
email: rassk@crust.irk.ru.
Ilyasova Aigul Maratovna,
candidate of geological and mineralogical sciences, leading engineer,
664033, Irkutsk, Lermontov st., 128,
Institute of the Earth's Crust SB RAS,
email: ila@crust.irk.ru.
Chebykin Evgeny Pavlovich,
Candidate of Chemical Sciences, Senior Researcher,
664033, Irkutsk, st. Lermontova, 128,
Institute of the Earth's Crust SB RAS,
664033, Irkutsk, st. Ulan-Batorskaya, 3,
Limnological Institute SB RAS,
email: epcheb@yandex.ru.
Abstract. Based on monitoring results of 2013–2022, the time-varying ratios of components in mineral water from carbonates containing gypsum and anhydrite are determined, when the activities ratios 234U/238U (AR4/8) vary from 11.82 to 15.71. With increasing this indicator, the activity of 234U (A4) also increases in mineral water, with maxima and minima occurring in 2017–2022. Variations in A4 are consistent with changes in total mineralization, the contents of all macrocomponents (Ca, Na, Mg, Si, K, S, and Cl), and some microcomponents (U, Li, B, V, Mn, Br, Y, Rb, and Sr), with an inverse trends of the other microcomponents (Cu, Sc, Nb, Mo, Ba, Ti, Zr, and Cr). It is inferred that U isotopes vary in mineral water due to changes in the chemical dissolution of carbonates. Mineral water is enriched in 234U recoil atoms like other dissolving components, whereas OA4/8 is complicated by the dependence of U dissolution on oxidation-reduction potential (ORP).
Keywords: groundwater, Baikal, 234U/238U, uranium, active fault, evaporate.
P. 151–163
Chalov P.I. Isotopic fractionation of natural uranium // Frunze: Ilim, 1975. 236 p.
Chebykin E.P., Rasskazov S.V., Vodneva E.N., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Seminsky A.K., Snopkov S.V. The first results of monitoring 234U/238U in water from active faults of the western coast of Southern Baikal // Doklady Earth Sciences. 2015. Vol. 460, No 4. P. 464–467.
Chebykin E.P., Sorokovikova L.M., Tomberg I.V., Vodneva E.N., Rasskazov S.V., Khodzher T.V., Grachev M.A. The current state of the waters of the river. Selenges on the territory of Russia by the main components and trace elements // Chemistry in the interests of sustainable development. 2012. Vol. 20. P. 613–631
Cherdyntsev V.V. Uranium–234. Atomizdat Press, Moscow, 1969. 308 p. Cherdyntsev V.V. Nuclear volcanology // Science, Moscow, 1973. 208 p.
Finkel R.C. Uranium concentrations and 234U/238U activity ratios in fault-associated groundwater as possible earthquake precursors // Geophysical Research Letters. 1981. Vol. 8, No. 5. P. 453–456.
Kiselev G.P., Yakovlev E.Yu., Druzhinin S.V., Galkin A.S. Distribution of Radioactive Isotopes in Rock and Ore of Arkhangelskaya Pipe from the Arkhangelsk Diamond Province // Geology of Ore Deposits. 2017. Vol. 59, No. 5. P. 391–406. DOI: 10.1134/S1075701517050014
Rasskazov S.V., Ilyasova A.M., Chuvashova I.S., Chebykin E.P. The 234U/238U variations in groundwater from the Mondy area in response to earthquakes at the termination of the Tunka Valley in the Baikal Rift System // Geodynamics & Tectonophysics. 2018. Vol. 9, No 4. P. 1217–1234. doi:10.5800/GT-2018-9-4-0392.
Rasskazov S.V., Ilyasova A.M., Chuvashova I.S., Bornyakov S.A., Orgilyianov A.I., Kovalenko S.N., Seminsky A.K., Popov E.P., Chebykin E.P. Hydrogeochemical zoning of uranium isotopes (234U/238U) in the Southern Siberian paleocontinent: the role of the South Baikal reservoir in the groundwater formation. Geodynamics & Tectonophysics. 2020.Vol. 11, No. 3.:P. 632–650. https://doi.org/10.5800/GT-2020-11-3-0496
Timashev S.F. On the nature of the Cherdyntsev–Chalov effect // Russian Journal of Physical Chemistry A. 2018. Vol. 92, No. 6. P. 1071–1075. DOI: 10.1134/S0036024418060183
Tokarev I., Zubkov A.A., Rumynin V.G., Polyakov V.A., Kuznetsov V.Yu., Maksimov F.E. Origin of high 234U/238U ratio in post-permafrost aquifers // Uranium in the Environment: Mining impact and consequences. / B.J. Merkel, A. Hasche-Berger (eds.). Springer, 2006. P. 847–856.
Yamamoto M., Sato T., Sasaki K., Hama K., Nakamura T., Komura K. Anomalously high 234U/238U activity ratios of Tatsunokuchi hot spring waters, Ishikawa Prefecture, Japan. Journal of Radioanalytical and Nuclear Chemistry. 2003. Vol. 255, No. 2. P. 369–373.
Zverev V.L., Dolidze N.I., Spiridonov A.I. Anomaly of even isotopes of uranium in groundwater of seismically active regions of Georgia // Geochemistry International. 1975. Vol. 11. P. 1720–1724.
Rasskazov S.V., Ilyasova A.M., Chebykin E.P. Temporal Changes of 234U/238U, 234U, and Element Concentrations in Mineral Water from Carbonates in the Olkha Well, Southern Siberian Platform: Conditions for Displaying Cherdyntsev-Chalov effect DOI 10.26516/2541-9641.2024.2.151 // Geology and Environment : electronic scientific journal. 2024. Vol. 4, No. 2. P. 151–163.
Send a letter of feedback to S. Rasskazov